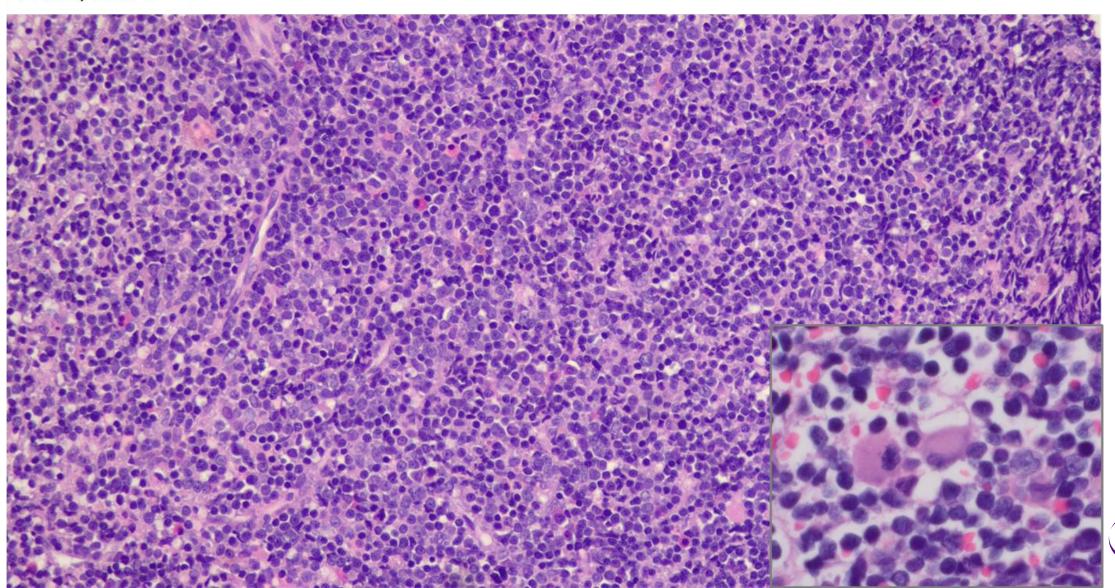

Case 1

Monthly Multi-Institutional Hematopathology Interesting Case Conference

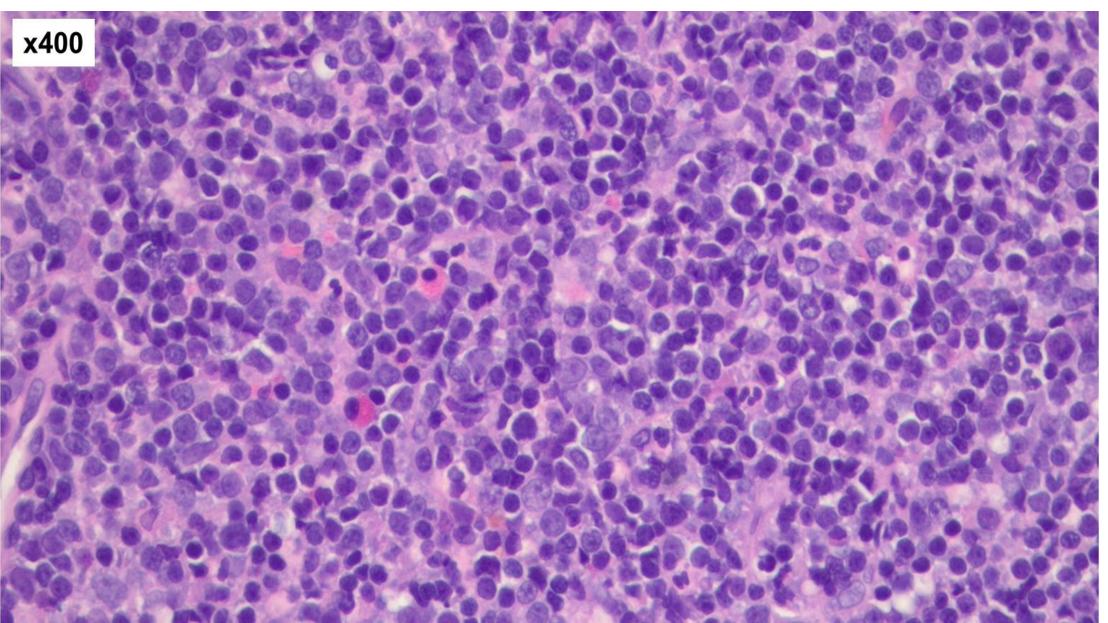
Mark Strong, DO PGY-3

Clinical Information

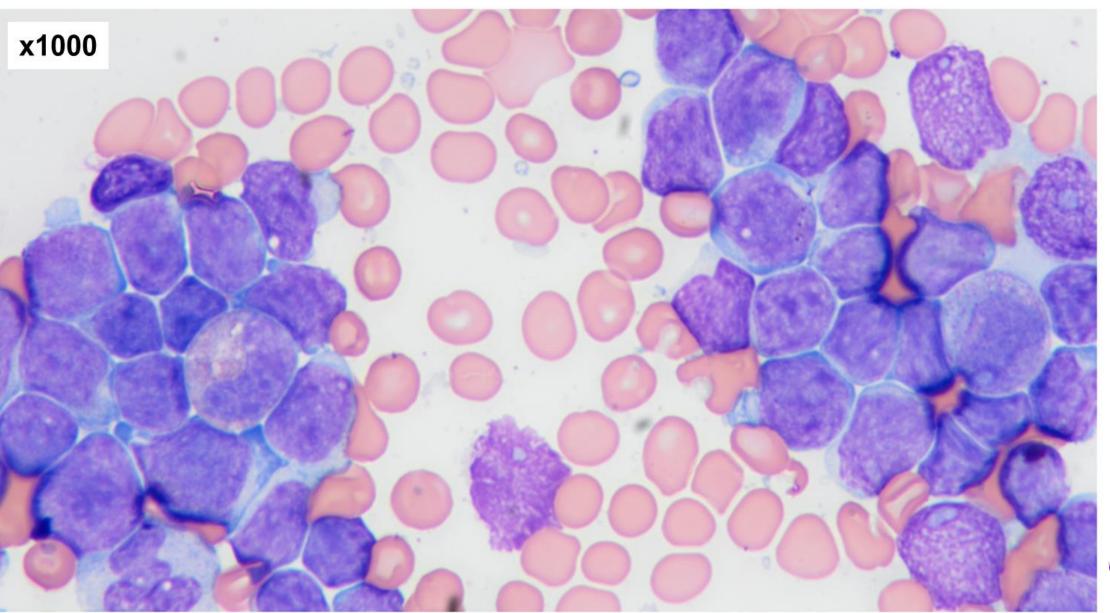
- A 3-year-old male with no significant history presented for one-week of joint pain, difficulty walking, and refusal to move, and accompanied by fatigue, bruising, and fever.
- CBC showed marked leukocytosis with increased blasts as follows: WBC: 129.3 k/ul, Hemoglobin: 8.6 g/dl; Platelets: 20 k/ul; 44% blasts.
- Absolute neutrophil counts were elevated: 30.9 k/uL and 16.8 k/uL on repeat testing.



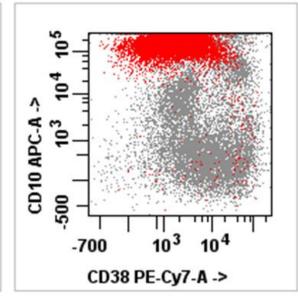
Parameter	Result	Neutrophils (%)	10
Red Blood Cell Count	3.51	Bands (%)	3
Mean Corpuscular	75.8	Lymphocytes (%)	35
Volume Mean Corpuscular	lean Corpuscular		9
Hemoglobin 24		Eosinophils (%)	1
Mean Corpuscular	00	Basophils (%)	0
Hemoglobin Conc.		Blasts (%)	44
RDW-CV	20.8	Blasts (%) Granulocytes,	
RDW-SD	55.4	Immature (%)	2
Platelet Count	20	Promyelocytes (%)	2

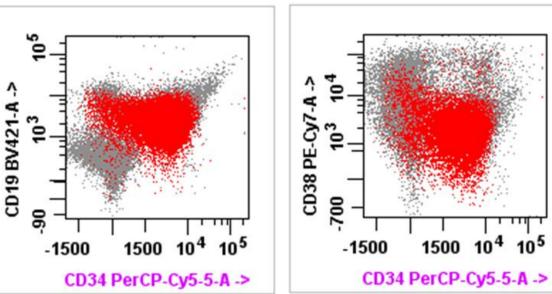

Microscopic Findings: Bone Marrow Core Bx

H&E, x200



Microscopic Findings: Bone Marrow Core Bx


Microscopic Findings: Smear



Immunophenotype

Markers	Expression		
CD45	Largely negative		
CD19	Positive		
CD20	Few positive (3.8%)		
CD10	Bright positive		
CD34	Positive		
CD13	Negative		
CD33	Negative		
CD38	Partial dim positive		
HLA-DR	Positive		
MPO	Negative		
TdT	Positive		
Surface			
Kappa/L	Negative		
ambda			
s/cCD3	Negative		

Cell Population	Percentag e
Blasts	67%
Maturing Granulocytes	12%
Monocytes	2.80%
Small T Lymphocytes	1.10%

MRD flow cytometric analysis detected 0.20% blasts after induction therapy (AALL1732).

Cytogenetics

Karyotype: 46,XY,t(9;22)(q34;q11.2)[16]/47,idem,+der(22)t(9;22)[2]/46,XY[4]

 FISH detected BCR-ABL1 fusion in 96.5% of cells and one copy of TCF3 in 10.5% of cells. Other Genes: Normal signal patterns for CRLF2, PBX1/TCF3, chromosomes 4, 10, 17, IKZF1, CDKN2A, KMT2A, ETV6/RUNX1, and IGH.

FISH detected t(9;22) BCR::ABL1 in 41% of flow sorted granulocytes.

Molecular Studies

 MyeloSEQer NGS: BCR/ABL1 (chr22:23631808-chr9:133730188) fusion (b2a3/e13a3)

<i>BCI</i> exor		BCR::ABL1 transcript type	Protein size (kDa)	Typical and atypical breakpoints and transcripts { 15703785; 29285010 }	Frequency in CML (overall and among the non-atypical major breakpoint cluster region ^a) { 29974949 ; 30675008 }	Frequency in BCR::ABL1+ B-ALL { 18055996; 26942999; 31595038; 32237084 }
e13 (b	(b2) a2	e13a2 (b2a2)	p210	Major breakpoint cluster region	~37.9%	17.50% ^b
e14 (b	(b3) a2	e14a2 (b3a2)	p210	Major breakpoint cluster region	~62.1%	12.5% ^b
e1	a2	e1a2	p190	Minor breakpoint cluster region	< 1%, 16.9%	~70%
e19	9 a2	e19a2	p230	Micro breakpoint cluster region	< 1%, 39.8%	Not available
e1	a3	e1a3	p190	Atypical/variant transcript	< 1%, 1.2%	< 1%
e13	3 a3	e13a3 (b2a3)	p203	Atypical/variant transcript	< 1%, 7.2%	< 1%
e14	4 a3	e14a3 (b3a3)	p203	Atypical/variant transcript	< 1%, 13.3%	< 1%
e6	5 a2	e6a2	p195	Atypical/variant transcript	< 1%, 3.6%	< 1%
e8	3 a2	e8a2	p200	Atypical/variant transcript	< 1%, 8.4%	Not available
e12	2 a2	e12a2	Not available	Atypical/variant transcript	< 1%, 1.2%	Not available
1ء	28	e1a8	n200	Atynical/variant transcript	Not available	~ 10%

9

e1

a8

ela8

p200

Atypical/variant transcript

Not available

< 1%

Molecular Studies (continued)

- Foundation one heme: BCR(NM_004327)-ABL1(NM_005157) fusion (B14*; A3) and IKZF1 loss exons 2-3
- Clonal immunoglobulin and T-Cell Receptor (TCR) gene rearrangements detected by PCR.
- Quantitative ddPCR test using e1a2 primer for BCR::ABL1 transcript (p190) was negative.
- After induction therapy: residual sequences detected estimated MRD value:
 1,101 residual clonal cells per million nucleated cells (Range: 728 1,629).

Diagnosis?

- I.C.C. 2022:
 - B-lymphoblastic leukemia/lymphoma with t(9;22)(q34.1;q11.2)/BCR::ABL1 and multilineage involvement.

- W.H.O. 2022:
 - Chronic myeloid leukemia, blast phase (B-lymphoblastic leukemia).

The International Consensus Classification of B-ALL

B-ALL with (9;22)(q34.1;q11.2)/BCR::ABL1 with lymphoid only involvement with multilineage involvement

B-ALL with t(11;19)(q23.3)/KMT2A rearranged

B-ALL with t(12;21)(p13.2;q22.1)/ETV6::RUNX1

B-ALL, hyperdiploid

B-ALL, low hypodiploid

B-ALL, near haploid

B-ALL with t(5;14)(q31.1;q32.3)/IL3::IGH

B-ALL with t(1;19)(q23.3;p13.3)/TCF3::PBX1

B-ALL, BCR::ABL1-like, ABL1 class rearranged

B-ALL, BCR::ABL1-like, JAK-STAT activated

B-ALL, BCR::ABL1-like, NOS

B-ALL with iAMP21

B-ALL with MYC rearrangement

B-ALL with **DUX4** rearrangement

B-ALL with MEF2D rearrangement

B-ALL with ZNF384(362) rearrangement

B-ALL with **NUTM1** rearrangement

B-ALL with HLF rearrangement

B-ALL with UBTF::ATXN7L3/PAN3, CDX2

("CDX2/UBTF")

B-ALL with mutated IKZF1 N159Y

B-ALL with mutated PAX5 P80R

Provisional entities:

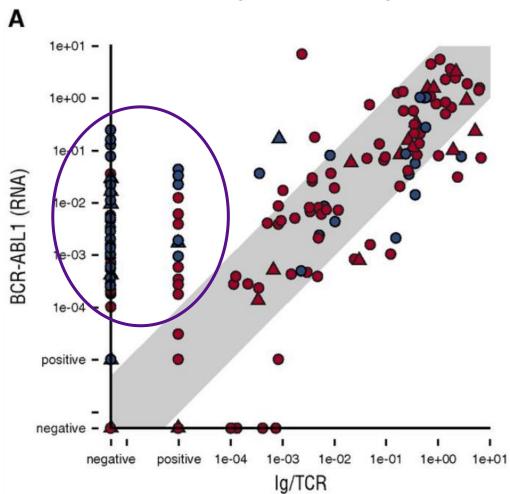
B-ALL, ETV6::RUNX1-like

B-ALL, with PAX5 alteration

B-ALL, with mutated ZEB2

(p.H1038R)/IGH::CEBPE

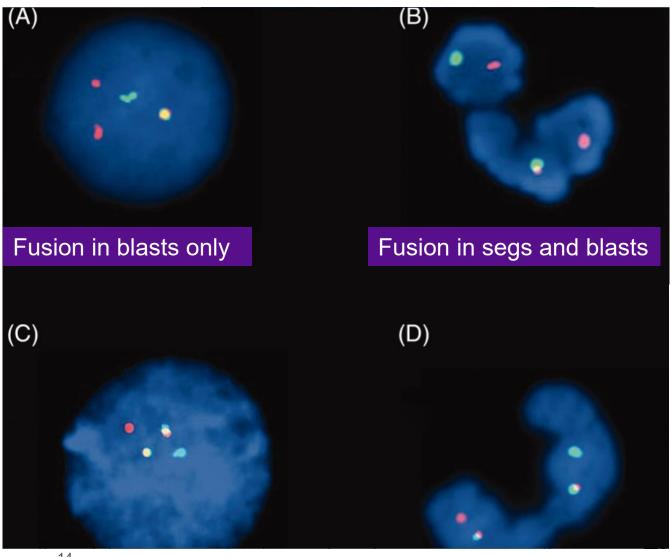
B-ALL, ZNF384 rearranged-like


B-ALL, KMT2A rearranged-like B-ALL, NOS

Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology

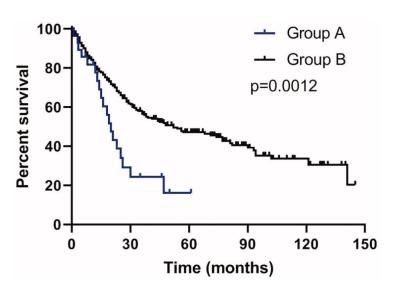
(Blood, 2017;129:2771)

Lenka Hovorkova,^{1,2} Marketa Zaliova,^{1,3} Nicola C. Venn,⁴ Kirsten Bleckmann,⁵ Marie Trkova,⁶ Eliska Potuckova,^{1,2} Martina Vaskova,^{1,2} Jana Linhartova,⁷ Katerina Machova Polakova,⁷ Eva Fronkova,^{1,2} Walter Muskovic,⁴ Jodie E. Giles,⁴ Peter J. Shaw,⁸ Gunnar Cario,⁵ Rosemary Sutton,^{4,9} Jan Stary,^{2,3} Jan Trka,^{1,3} and Jan Zuna^{1,3}



MRD Discordance

- Many cases are negative (or slightly positive) by IgH/TCR PCR
- BUT have high levels of BCR::ABL1 transcript



Sorted FISH BCR::ABL1 Fusion Patterns

Fusion in blasts only (lymphoid only disease)

Fusion in sorted segmented granulocytes and blasts (multilineage disease) similar to CML blast phase

14

CML Blast Phase vs Ph+ B-ALL with multilineage involvement

- The multi-lineage pattern resembles CML in blast phase.
- However, these cases are distinct because:
 - They present de novo, not from progression of chronic-phase CML.
 - They occur much more frequently in children.
- Cannot be distinguished simply based on p190 and p210.

BCR::ABL1 Transcript Variants

- Most common BCR::ABL1 transcripts in CML are:e13a2 (b2a2) and e14a2 (b3a2) found in >95% of CML (p210)
- Most common transcript in Ph+ B-ALL: e1a2 (p190)
- Rare transcripts lacking ABL1 exon 2, such as in our case: e13a3 (b2a3) and e14a3 (b3a3) found in <1% of CML (p203)
 - More commonly seen in CML in adults, not in de novo childhood ALL
 - Despite the unusual transcript, the immunophenotype is clearly B-ALL in our case

Summary

- Diagnostic challenge: Overlap between Ph-positive B-ALL with multilineage involvement and CML in lymphoid blast phase.
- Evaluation of BCR::ABL1 fusion on flow sorted myeloid cells is helpful to determine multilineage involvement.
- Ph-positive B-ALL carries a high risk of multilineage involvement, making it critical to distinguish lymphoid-only from multilineage cases, as this distinction may carry significant clinical implications.
- Evaluating BCR::ABL1 fusion in myeloid cells is essential for accurate diagnosis and treatment planning in Ph+ B-ALL

References:

- Aypar U, Dilip D, Gadde R, et al. Multilineage involvement in KMT2A-rearranged B acute lymphoblastic leukaemia: cell-of-origin, biology, and clinical implications. Histopathology. 2024;85:310–316.
- Leske IB, Hantschel O. The e13a3 (b2a3) and e14a3 (b3a3) BCR::ABL1 isoforms are resistant to asciminib. Leukemia. 2024;38:2041–2045.
- Burmeister T, Schwartz S, Taubald A, et al. Atypical BCR-ABL mRNA transcripts in adult acute lymphoblastic leukemia. Haematologica. 2007;92:1699–1702.
- Hovorkova L, Zaliova M, Venn NC, et al. *Monitoring of childhood ALL using BCR::ABL1 genomic breakpoints identifies a subgroup with CML-like biology.* Blood. 2017;129(20):2771–2781.
- Kamoda Y, Sato T, Kuriyama K, et al. Philadelphia Chromosome—Positive Acute Lymphoblastic Leukemia Is Separated into Two Subgroups Associated with Survival by BCR-ABL Fluorescence In Situ Hybridization of Segmented Cell Nuclei. Acta Haematologica. 2016;135(3):157–166.
- Chen Z, Chen H, Yang J, et al. Chronic myeloid leukemia presenting in lymphoblastic crisis, a differential diagnosis with Philadelphia-positive B-lymphoblastic leukemia. Leukemia & Lymphoma. 2020;61(12):2831–2838.
- Balducci E, Bene MC, Morabito F, et al. *Interphase FISH for BCR-ABL1 rearrangement on neutrophils: A decisive tool to discriminate a lymphoid blast crisis of CML from a de novo BCR-ABL1-positive ALL.* Hematologic Oncology. 2018;36(1):344–348.
- Barber DA, Orazi A, Hasserjian RP, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias. Blood. 2022;140(11):1200–1213. doi:10.1182/blood.2022015850
- WHO Classification of Tumours Editorial Board. *Haematolymphoid Tumours*. Lyon (France): International Agency for Research on Cancer; 2024. (WHO Classification of Tumours series, 5th ed.; vol. 11).

Thank You

