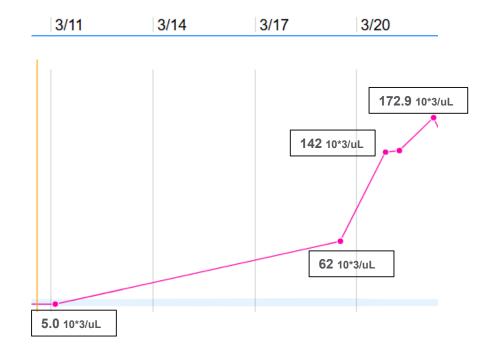


Case 4: How Many Hits?

Monthly Multi-Institutional Hematopathology Interesting Case Conference

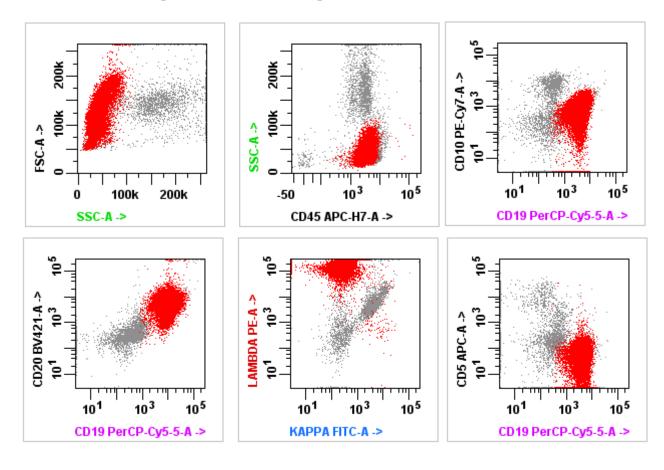
Selcuk Erturk, MD, PGY-5, Hematopathology fellow 10/22/2025


Clinical Presentation

- 93-year-old female with h/o breast cancer s/p mastectomy, hormonal treatment, and radiotherapy.
- Presented to NYU-ED with bilateral leg pain, abdominal pain, night sweats and unintentional weight loss for 2 weeks, found to have new onset anemia. CT of abdomen is normal.

CBC

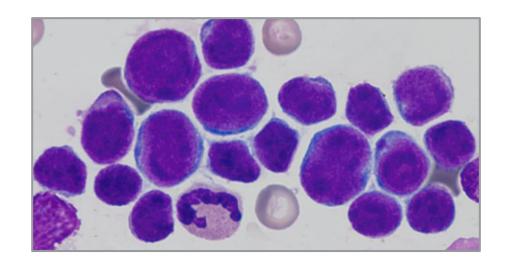
WBC count

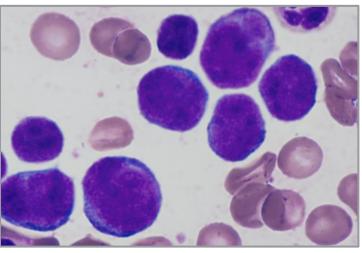


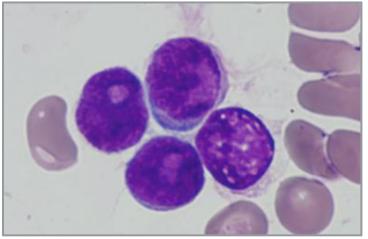
Units	3/20/25
WBC COUNT	142 10*3/uL
RBC COUNT	3.52 10*6/uL
HEMOGLOBIN	10 g/dL
PLATELET COUNT	249 THOUS/CMM
Lymphocytes %	21%
Neutrophils %	10% 🗸
Monocytes %	1% 🗸
Eosinophils %	1%
Basophils %	1%

LDH (125 - 220 U/L) 794 ↑

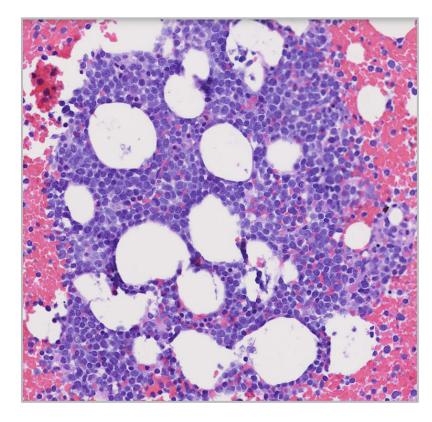
Flow cytometry on PB and BM

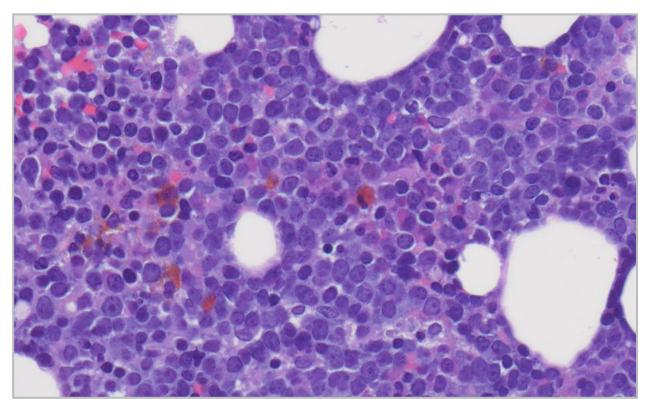



Positive: CD45, CD19, CD20, CD38, and surface lambda

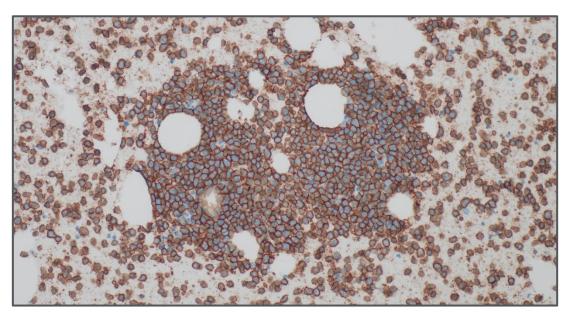

Negative: CD5, CD10, CD11c, CD23, CD25, CD103, and surface kappa

Aspirate Smears, Bone Marrow

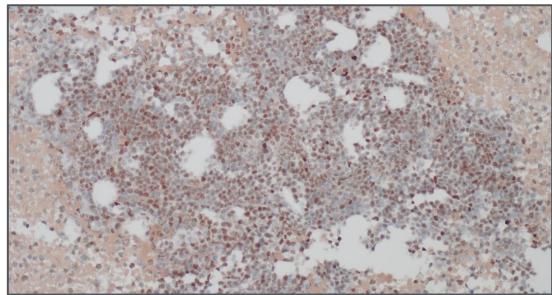




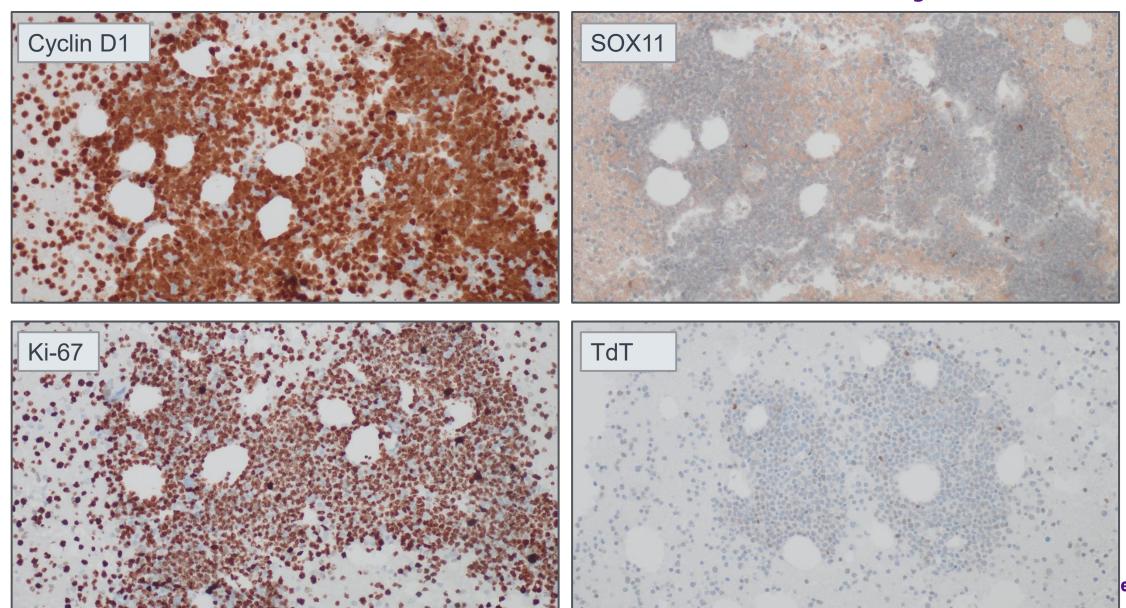
Bone marrow core biopsy and clot section, H&E Stain



x20, objective


x40, objective

Immunohistochemical stains


CD20, x20, objective

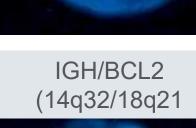
BCL6, x20, objective

Immunohistochemical stains, cont'd, x20 objective

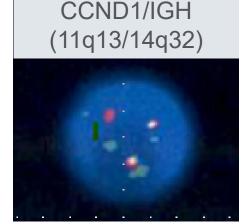
Summary of immunophenotype by IHC

Results	Markers tested
Positive Markers	CD20, PAX-5, BCL-2, BCL-6, c-MYC, Cyclin D1, LEF1, P53 (wild type pattern)
Negative Markers	CD5, SOX11, CD10 (largely-, rare+), MUM1, EBER ISH, HHV8, CD34, TdT
Ki-67	95%

Diagnostic Differentials


Entity	Characteristic features and diagnostic criteria		
Tand Bill / and/or Bill & roarrandomonic	Most likely given BCL2 , c-MYC positive and Ki-67 > 95% . Often CD10 ⁺ , but ~20–30% can be CD10 ⁻ . Requirement of MYC , BCL2 , and/or BCL6 fusions .		
	Cyclin D1 expression suggests MCL, but CD5 ⁻ and SOX11 ⁻ make it <i>very atypical</i> . Still, rare CD5 ⁻ /SOX11 ⁻ blastoid MCL cases exist. (FISH) as a primary event would be helpful to confirm MCL.		
Diffuse large B-cell lymphoma, NOS (DLBCL, NOS)	A CD10 ⁻ / MUM1 ⁻ / BCL6 ⁺ pattern fits germinal center B-cell (GCB) subtype of DLBCL. High Ki-67 and MYC expression are compatible. Rare subset of DLBCL shows Cyclin D1 positivity without CCND1 rearrangement. These are usually CD5 ⁻ /CD10 ⁻ and aggressive. They're also post-germinal center and expresses MUM1. Also blastoid morphology argues against this.		

FISH study


- Positive for BCL6, IGH-BCL2, MYC-IGH, and CCND1-IGH gene rearrangements.
 - Positive for the rearrangement of BCL6 (3q27) -45.5%,
 - Positive for the rearrangement of MYC (8q24.1) -43.5%
 - Positive for 2~3 fusion for CCND1/IGH (11q13/14q32)- 2~3F1R2~3G in 47%
 - Positive for 2~3 fusion for IGH/BCL2 (14q32/18q21) - 2~3F1R2~3G in 46.5%

Proposed Final Diagnosis

High-grade B-cell lymphoma with MYC, BCL2, BCL6, Cyclin D1 gene rearrangements (quadruple-hit)

Follow-up

 Patient was treated with mini-CHOP because of low performance status and multiple comorbidities; and also, Rituximab.

Deceased shortly after diagnosis.

Literature Review of Quadruple-Hit

Case	Sex/	Presentation	CNS Involvement	BM Involvement	LDH 110-225 IU/L
#	Age				
1	M/72	CNS Sx and generalized LAD	Positive	Negative	582
2	F/81	Bone marrow involved by B-cell lymphoma	·		NA
3	M/68	Bone marrow involved by B-cell lymphoma	NA	Positive	NA
4	F/51	Diffuse lymphadenopathy	Negative	Negative	522
5	M/79	CNS Sx, LAD, and skin infiltration	Positive	NA	989
6	NA	NA	NA	NA	NA
7	NA	NA	NA	NA	NA
8	NA	NA	NA	NA	NA
9	F/74	Mediastinal mass	Negative	Negative	NA
10	M/76	Cervical LAD	Negative	Negative	Normal
11	M/73	Tonsillar mass and cervical LAD	Negative	Negative	Normal

Literature Review of Quadruple-Hit, cont'd

Case #	Diagnosis	IHC	Treatment / Response	Follow up/ Outcome
1	MCL Blastoid variant vs BCL UC	GCB Ki-67: 60%	R-CHOP and intracranial MTX/ CR to LAD, PR to CNS	NA/ died of CNS disease
2	DLBCL	NA		9 days/ Death due to therapy related complications
3	BL/mature B-ALL	NA	NA	6 days/ Death due to unknown causes
4	DLBCL	GCB, Ki67: 80%	R-CHOP/ CR	30 months/ NA
5	DLBCL vs Pleomorphic MCL	GCB Ki67: 80%; SOX11-	Rituximab, Ifosfamide, Cytosine- arabinoside Intrathecal MTX/ NA	4 months/ Died of disease
6	HGBCL with quadruple hits	NA	Autologous BM transplantation	8 months/ Died of relapse
7	HGBCL	Non-GCB BCL1+	NA	NA
8	HGBCL	Non-GCB BCL1+	NA	NA
9	HGBCL with quadruple- hits	Non-GCB Ki67: 90%	R-CHOP/ PR	8 months/ Died of disease
10	Quadrupl-hit pleomorphic MCL	CD5-, SOX11- Ki67: 60%	Lenalidomide in combination with R2-CHOP/ CR	15 months NA
11	HGBCL with BCL2, BCL6, MYC and CCND1 R	GCB, CD5-, SOX11- Ki67: 90%	R-EPOCH/ CR	20 months/ Alive

Literature Review of Quadruple-Hit, NGS Results

				NGS				
Case 1			Case 2		Case 3			
Gene	AA change	VAF	Gene	AA change	VAF	Gene	AA change	VAF
ARID1A	p.Ser280AlafsTer111	11%	CDKN2A	p.R80*	39%	ARID1B	p.Gln454fs	9.05%
BCL2	-	5%	KRAS	p.G13D	35%	BCL2	p.Ala131Val	3.00%
CCND3	p.Ser259Ala	42%	TP53	p.F270S	33%	BCL2	p.Arg146Lys	28.00%
FANCA	p.Arg1011His	7%	TNFRSF14	p.T169fs*65	32%	BCL2	p.Val134Met	1.00%
KMT2D	p.Arg2734Ter	43%				CCND1	p.Ala121Ser	19.00%
MYC	p.Leu159Phe	14%				CCND1	p.Glu162Ala	23.00%
MYC	p.Gln113His	13%				CCND1	p.Thr184lle	3.00%
MYC	p.Tyr89Asn	12%				FOXO1	p.Thr24lle	30.00%
PIM1	p.Tyr38Phe	9%				IL7R	p.Phe213Leu	21.00%
PIM1	p.Lys29Asn	8%				MGA	p.Gln1988*	27.00%
PIM1	p.Thr23lle	7%				PIM1 SGK1	p.Ser97Asn	22.00%
PIM1	p.Val96Leu	7%				SGK1	p.Ala121Gly	24.00%
PXDNL	p.Thr453Ser	8%				SGK1	p.Met385lle	27.00%
SF3B1	p.Lys666Asn	9%					p.Pro190Ala	25.00%
SOCS1	p.Ala16Thr	7%						
TNFRSF14	p.Gln158Ter	8%						
TSC2	p.Gly20Ter	8%						

Case 1 (HGBCL, quadruple-hit): The combination of mutations best fits in the EZB-DLBCL molecular cluster. PIM1, KMT2D, TNFRSF14 genes mutation frequently reported in DLBCL

Case 2(HGBCL, quadruple-hit): CDKN2A and TP53 can be seen in both cases. KRAS and TNFRSF14 are very atypical for MCL.

Case 3(quadruple hit MCL): Deletions or mutations of the *ARID1B* gene have been observed in lymphoplasmacytic lymphoma. The Y24I mutation in *FOXO1* gene has been identified in diffuse large B-cell lymphoma (DLBCL) and was associated with decreased overall survival. Mutations of the *SGK1* gene were common in DLBCL and the *PIMI* gene mutation has been identified in DLBCL (leg type). The *CCND1* mutations have been reported in MCL.

Mutation profile between HGBCL and MCL

Mantle Cell Lymphoma (MCL)	High Grade B-Cell Lymphoma (Adult HGBCL)
ATM, 41-61%	MYD88 (ABC subtype), CD79B, CARD11, TBL1XR1, TNFAIP3
TP53, 14-31%	PRDM1 (loss and/or mutation, 53%)
KMT2D, 12-23%	KMT2D (MLL2), TET2
CCND1, 14-34%	TP53 (loss/mutation, ~50%), ASPM
NSD2, 10-13%	PIM1 (20%)
BIRC3, 6-10%	DDX3X, GNA13, CCND3 (rare)
Notch1, 5-14%	

HGBCL w Quadruple-hit vs. MCL

- In DLBCL, the data suggests that the *CCND1* rearrangement is a **secondary event** during lymphoma evolution. This is in contrast to MCL, where *CCND1* rearrangement is considered to be a **primary genetic event**.
- Non-GCB phenotype is a point against the diagnosis of MCL because MCL is believed to originate from a naive pregerminal center B cell
- Loss or marked reduction of p27 expression supports MCL, particularly when Cyclin D1 is positive or suspected.
- Treatment course may be helpful.
- Moreover, a yet unacknowledged diagnostic "gray zone" may exist between DLBCL and MCL.

Take Home Messages

- B-cell lymphomas with concurrent *MYC*, *BCL2*, *BCL6*, and *CCND1* rearrangements appear to be a rare occurrence; however, current standard approaches to DLBCL/HGBL classification do not require routine testing for *CCND1* rearrangement.
- With the current classification schemes de-emphasizing the importance of *BCL6* rearrangement, this may no longer be routinely assessed as well.
- The addition of *CCND1* rearrangement in the workup for a DLBCL/HGBL might only be sought in cases with BCL1 protein expression, as seen in our case.
- Sequencing may be of benefit for delineating DLBCL from MCL in the quadruple hit setting, although current data is limited.

References

- L. Jeffrey Medeiros, Jing Zhou, Xiaoqiong Wang, Wei Wang, Guilin Tang, Shimin Hu. Leukemic phase of MYC/BCL2 double-hit high-grade B-cell lymphoma: A report of 35 cases. Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. Human Pathology 164 (2025) 105933
- Kawakami K et al (2004) Case of B-cell lymphoma with rearrangement of the BCL1, BCL2, BCL6, and c-MYC genes. Int J Hematol 79(5):474–479.
- Bacher U, Haferlach T, Alpermann T, Kern W, Schnittger S, Haferlach C. Several lymphoma-specific genetic events in parallel can be found in mature B-cell neoplasms. Genes. (2011) Chromosomes Cancer 50(1):43–50.
- FNU Monika, Ahmed Sabri, David Cantu, Eric Vail, Andrew Siref. Molecular characterization of a rare case of high-grade B-cell lymphoma with *MYC*, *BCL2*, *BCL6*, and *CCND1* rearrangements. Journal of Hematopathology (2024) 17:155–161
- Yoshida M et al (2015) Clinicopathological features of double-hit B-cell lymphomas with MYC and BCL 2, BCL6 and CCND1 rearrangements. Pathol Int 65(10):519–527.
- Jonathan Proulx, MD, Ryan Denley, DO, Bader Maria Pedemonte, MD, Ashish A. Shah, DO, Rachel Ochs, MD, Missak Haigentz, Jr., MD, Angela T. Alistar, MD, Ilen Early, MD, Eric D Whitman, MD, Mohamad Cherry, MD MS. Quadruple Hit Lymphoma: A Rare Entity with Dismal Prognosis. *Blood* (2018) 132 (Supplement 1): 5305.
- Ittel A et al (2015) Four genetic lymphoma-specific events (MYC, BCL2, BCL6 and CCND1) identified in a high-grade B lymphoma case. Blood Cancer J 5(12):e374–e374
- Elaine S. Jaffe, Daniel A. Arber, Elias Campo, Nancy Lee Harris, Leticia Quintanilla-Martinez. Hematopathology, 3rd Edition.
- Proulx J et al (2018) Quadruple hit lymphoma: a rare entity with dismal prognosis. Blood 132(Supplement 1):5305–5305
- Meloni-Ehrig A et al (2020) 36. Quadruple-hit B-cell lymphoma with simultaneous BCL2, BCL6, CCND1, and MYC rearrangements: two new cases. Cancer Genet 244:14
- Cheng J et al (2021) CCND1 genomic rearrangement as a secondary event in high grade B-cell lymphoma. Hemasphere 5(1):e505
- Liu W et al (2021) Quadruple-hit pleomorphic mantle cell lymphoma with MYC, BCL2, BCL6, and CCND1 gene rearrangements. Br J Haematol 195(4):634–637
- Waseem Lone and Alyssa Bouska, et al. High-grade B-cell lymphoma not otherwise specified, with diffuse large B-cell lymphoma gene expression signatures: Genomic analysis and potential therapeutics. Am J Hematol. 2025;100:10–22

Thank you!

