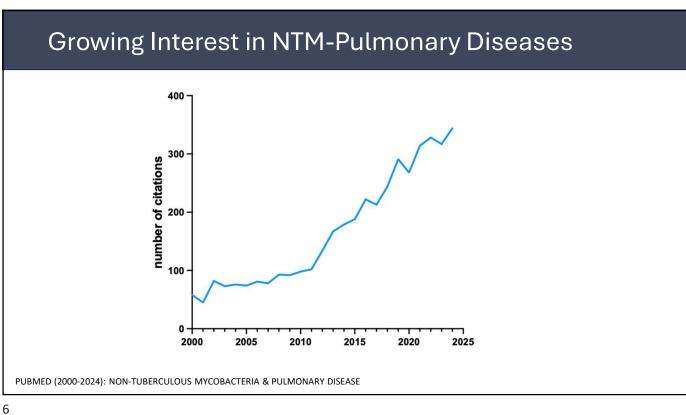
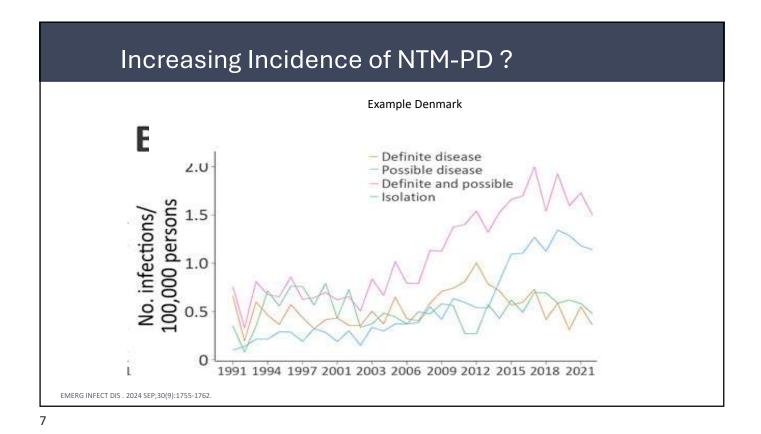
Best Practice Advances in Front-Line Management to Optimize Clinical Outcomes in

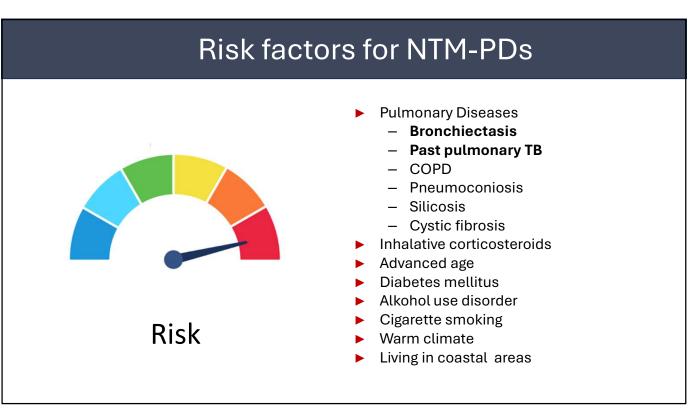
NONTUBERCULOUS MYCOBACTERIAL (NTM) LUNG DISEASE

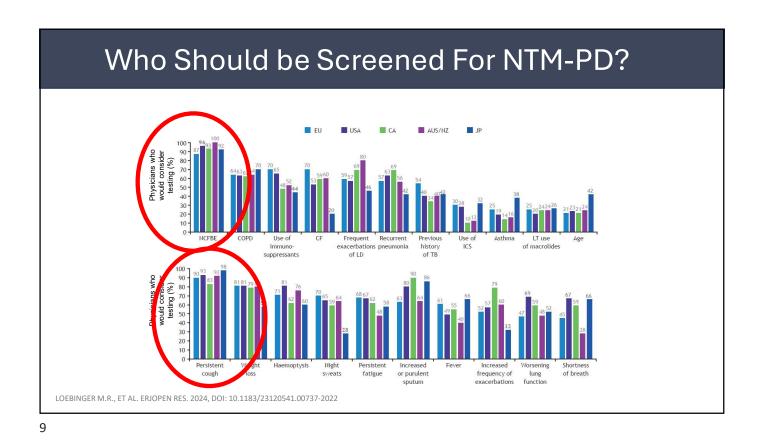
Focus on Prompt Intervention, Individualized Treatment Goals, Patient-Reported Outcomes, Symptom Improvement, Regimen Adherence, and Guidelines-Based Antimicrobial Therapy

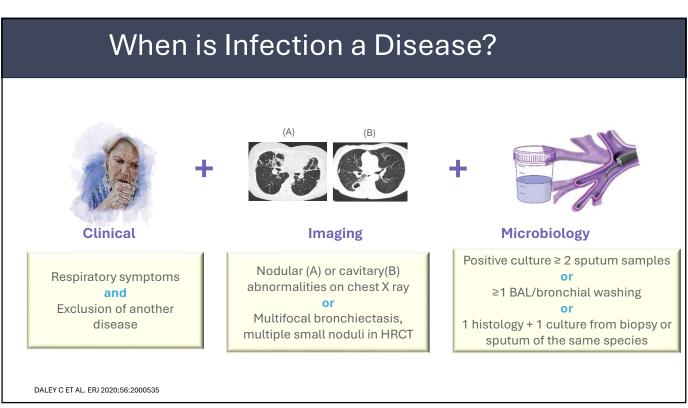
1






What are NTMs?


(M. leprae)
(M

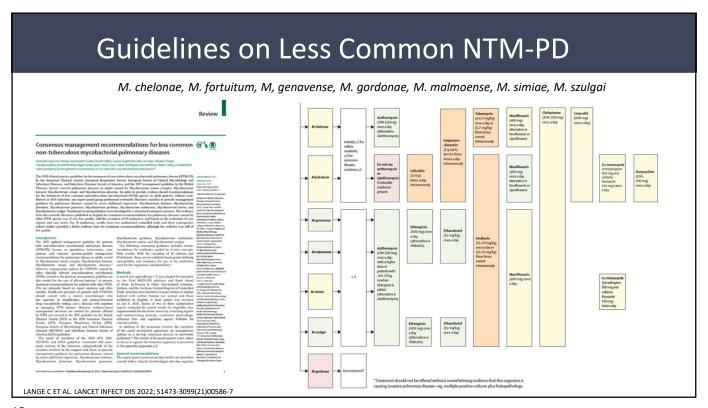

What are NTM-Pulmonary Diseases? **NODULAR-BRONCHIECTATIC** FIBRO-CAVITARY 5

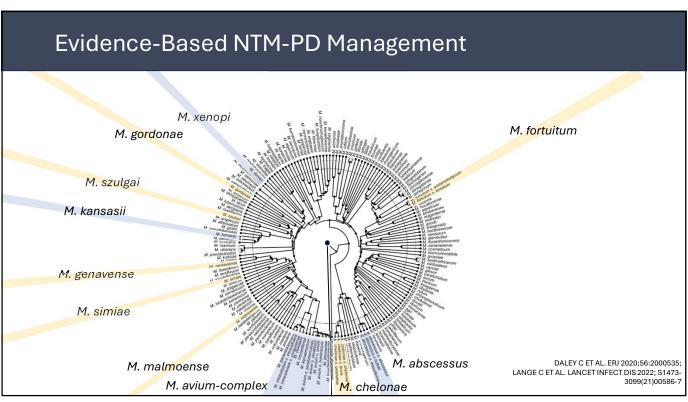
When is Infection a Disease?

CRITERIUM

FAVOURS DISEASE

1	GROWTH	ACID-FAST BACTERIA VISIBLE
2	ISOLATION	REPEATED ISOLATION OF THE SAME SPECIES
3	SOURCE	ISOLATION FROM A STERILE SOURCE
4	SPECIES	PATHOGENIC SPECIES (E.G. M. KANSASII)
5	HOST FACTORS	IMMUNODEFICIENCY


WOLINSKY E: REV INFECT DIS 1981; 3: 1025-1027


11

Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCAIID/IDSA Clinical Practice Guideline: Executive Summary Black Mr. Per and Summary Summary Black Mr. Per and

▶ M. abscessus: DST! Combination of oral und i.v. therapy

ATS/ERS/ESCMID/IDSA Guideline

Distinguished Expert Faculty

Professor Stefano Aliberti

Professor Stefano Aliberti MD PhD

Professor in Respiratory Medicine Humanitas University, Milan, Italy Chief, Respiratory UNIT IRCCS Humanitas Research Hospital, Milan, Italy Chair, Italian Registry on Non-Tuberculous Mycobacteria (IRENE)

12:55 – 13:10 hrs

Antimicrobial Decision-Making in MAC Lung Disease

15

Distinguished Expert Faculty

Professor David E. Griffith

Professor David E. Griffith MD PhD

Professor of Medicine National Jewish Health Denver, Colorado, USA

13:10 - 13:25 hrs

Translating Results of New MAC Lung-Focused Trials

Distinguished Expert Faculty

Professor Christoph Lange

Professor Christoph Lange, MD PhD

Medical Director

Research Center Borstel - Leibniz Lung Center, Germany Professor of Respiratory Medicine and International Health University of Lübeck, Germany

13:25 - 13:45

Applying New Trial-Based Evidence, Guidelines, and Individualized Approaches to Real World Management for MAC Lung Disease

- Female, 80 years
- Retired philosophy teacher
- Former smoker, 36 p/y (quit)

- · Female, 80 years
- Retired philosophy teacher
- Former smoker, 36 p/y (quit)

Comorbidities:

- GERD/hiatal hernia
- Cerebrovascular disease
- Glaucoma → bilateral full blindness
- Mild hearing loss induced by 2 weeks of azithromycin (1 tablet three times per week), subsequently discontinued
- · Epilepsy on valproate

21

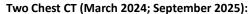
Clinical Case

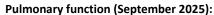
- Female, 80 years
- Retired philosophy teacher
- Former smoker, 36 p/y (quit)

Comorbidities:

- GERD/hiatal hernia
- Cerebrovascular disease
- Glaucoma → bilateral full blindness
- Mild hearing loss induced by 2 weeks of azithromycin (1 tablet three times per week), subsequently discontinued
- Epilepsy on valproate

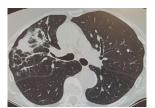
Two Chest CT (March 2024; September 2025):


 Bilateral cylindrical bronchiectasis; varicoid pattern in RML; mucus plugging; diffuse tree-inbud; progressive changes


- · Female, 80 years
- Retired philosophy teacher
- Former smoker, 36 p/y (quit)

Comorbidities:

- · GERD/hiatal hernia
- Cerebrovascular disease
- Glaucoma → bilateral full blindness
- Mild hearing loss induced by 2 weeks of azithromycin (1 tablet three times per week), subsequently discontinued
- · Epilepsy on valproate


 Bilateral cylindrical bronchiectasis; varicoid pattern in RML; mucus plugging; diffuse tree-inbud; progressive changes



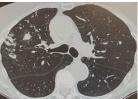
FEV₁ 65% predicted (post-BD)

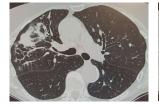
23

Clinical Case

Symptoms:

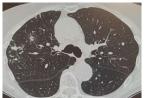
- Chronic cough for many years, attributed to GERD
- · Daily cough with an impact on QoL
- Marked asthenia
- ~7 kg weight loss in 1 year (BMI 17.0)
- Nocturnal cough worse supine
- Mild haemoptysis (2025)

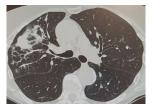

Exacerbations:


 4 in 2025, none hospitalized, treated with antibiotics (ciprofloxacin, amoxicillinclavulanate, tetracyclines) with only transient benefit

Immune profile:

Relative T- and B-lymphocyte reduction; IgG subclasses normal





BAL (June 2025):

- Mycobacterium avium
 - Smear Positive
 - Time To Culture Positivity ~1 week
 - Macrolide susceptible
 - Amikacin MIC 32
- Aspergillus spp.
 - Rare colonies
 - Galactomannan 1.2 (positive)
 - PCR DNA detected

- What is driving the disease?
- Would you initiate treatment?
- If so, what would you target?

25

Initial Evaluation for Antimicrobial Decision-Making

Host factors

Age

Increasing risk of intolerance and adverse events

Comorbidities

Drug intolerancesConsider dose reduction or

thrice-weekly regimens Consider interactions with other drugs, e.g. azoles

Patient wishes Aim of treatment

Aim of treatmer

Aiming for cure or disease control?

Disease severity

Radiological

Fibrocavitary disease **Clinical**

Weight loss, fever, haemoptysis, respiratory failure

Biochemical markers Microbiological

Smear positivity

Disease progression

Radiological

Development of cavitation or fibrosis, increasing nodules or tree-in-bud changes

Clinical

Worsening symptoms, development of new symptoms, weight loss

Microbiological

Development of new or increasing smear positivity

Clinical relevance

NTM species

Some species more pathogenic than others

Immunosuppression

Primary immunodeficiency HIV infection Immunosuppresive therapy Anti-TNF- α therapy Corticosteroids

Lung transplantation

Need for *M. abscessus* eradication

Recommendation

In patients who meet the diagnostic criteria for NTM pulmonary disease, we suggest initiation of treatment rather than watchful waiting, **especially in the context of positive acid-fast bacilli sputum smears and/or cavitary lung disease** (conditional recommendation, very low certainty in estimates of effect).

Daley CL. Eur Respir J 2020 ;56:2000535; Cowman S. Eur Respir J 2019; 54: 1900250

The Microbiological Domain

Host factors

Increasing risk of intolerance and adverse events

Comorbidities

Drug intolerances

Consider dose reduction or thrice-weekly regimens Consider interactions with other drugs, e.g. azoles

Patient wishes

Aim of treatment

Aiming for cure or disease control?

Disease severity

Radiological

Fibrocavitary disease Clinical

Weight loss, fever, haemoptysis, respiratory

failure Biochemical markers

Microbiological

Smear positivity

Disease progression

Radiological

Development of cavitation or fibrosis, increasing nodules or tree-in-bud changes

Clinical

Worsening symptoms. development of new symptoms, weight loss

Microbiological

Development of new or increasing smear positivity

Clinical relevance

NTM species

Some species more pathogenic than others

Immunosuppression

Primary immunodeficiency HIV infection

Immunosuppresive therapy Anti-TNF- α therapy Corticosteroids

Lung transplantation

Need for M. abscessus eradication

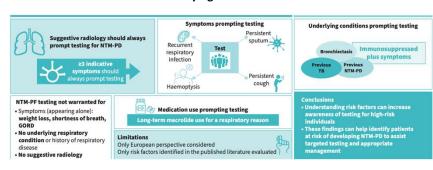
Recommendation

In patients who meet the diagnostic criteria for NTM pulmonary disease, we suggest initiation of treatment rather than watchful waiting, especially in the context of positive acid-fast bacilli sputum smears and/or cavitary lung disease (conditional recommendation, very low certainty in estimates of effect).

Daley CL. Eur Respir J 2020 ;56:2000535; Cowman S. Eur Respir J 2019; 54: 1900250

27

The Microbiological Domain


Systematic microbiological testing

Daily talk with the Lab

- Species (and subspecies) identification*
- Appropriate and reliable DST
- (Ideally) Genotyping of the same species isolates if recurrent

*12 MAC: M. avium, M. intracellulare, M. chimaera, M. colombiense, M. arosiense, M. vulneris, M. bouchedurhonense, M. timonense, M. marseillense, M. yongonense, M. paraintracellulare and M. lepraemurium (van Ingen et al., Int J Syst Evol Microbiol 2018;68:3666)

Identifying those to be tested

**12 European experts used a three-round modified Delphi process to identify clinical symptoms and comorbidities that increase a person's risk for NTM-PD indicate the need for testing (Loebinger MR. ERJ Open Res 2024; 10: 00791-

The Microbiological Domain **Species** Macrolide resistance culture conversion Macrolide-susceptible · non-cavitary 60-80% 50-80% cavitary Macrolide-resistant 5% · no surgery, no IV aminoglycoside · surgery plus IV aminoglycoside 15% - surgery plus aminoglycoside for ≥ 6 months 80% Vande Weygaerde. BMC Infectious Diseases 2019;19:1061 Kwak N. Clin Infect Dis 65: 1077; Griffith AJRCCM 2006; Jeong AJRCCM 2015; Wallace Chest 2014; Koh ERJ 2017, Moon AAC 2016 29

The Microbiological Domain

Smear Positivity as a risk factor for DISEASE PROGRESSION

	Univariate analysis		Multivariate analysis	
	HR (95% CI)	p-value	HR (95% CI)	p-value
Age years	0.990 [0.980-1.001]	0.072	0.987 [0.975-0.999]	0.040
Male	0.976 [0.767-1.243]	0.846		
BMI kg·m ⁻²	0.890 (0.856-0.925)	< 0.001	0.926 (0.882-0.973)	0.002
Smoker	0.887 (0.695-1.133)	0.337		
Past history of pulmonary TB	1.269 (0.991-1.624)	0.059	0.987 [0.746-1.306]	0.928
Presence of comorbidity 1	0.911 (0.714-1.162)	0.452		
Presence of systemic symptom*	1.560 (1.191-2.045)	0.001	1,490 [1,095-2,028]	0.011
Positive sputum AFB smear	2.298 [1.795-2.941]	< 0.001	1.811 (1.350-2.428)	< 0.001
Causative organism		0.001		0.364
Mycobacterium avium	1		1	
Mycobacterium intracellulare	1.512 [1.186-1.928]		0.869 [0.642-1.177]	
Radiological type: fibrocavitary	2.695 [2.099-3.460]	< 0.001	2.102 [1.519-2.908]	< 0.001
Involved lobes	1.384 [1.260-1.519]	< 0.001	1.178 (1.050-1.322)	0.005
FVC % pred	0.991 [0.984-1.998]	0.011	1.001 [0.994-1.009]	0.712

Hwang JA. Eur Respir J. 2017 Mar 8;49(3):1600537

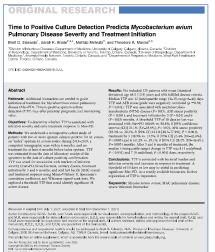
Non-cavitary nodular	bronchiectatic MAC-PD

Risk factors	Multivariate analysis			
	Adjusted OR (95% CI)	P value		
Age ≤60 years	1.630 (1.036-2.564)	0.035		
$BMI \le 18.5 \text{ (kg/m}^2\text{)}$	0.515 (0.310-0.855)	0.010		
COPD	0.827 (0.410-1.669)	0.596		
Cough	1.458 (0.923-2.303)	0.106		
Any systemic symptom ^a	2.917 (1.606-5.299)	< 0.001		
Positive AFB smear	2.041 (1.214-3.432)	0.007		
Mycobacterium intracellulare isolates	1.584 (0.998-2.514)	0.051		
No. of involved lobes ≥4	1.652 (1.021-2.674)	0.041		

Kwon BS. Respir Med. 2019 Apr;150:45-50

The Microbiological Domain

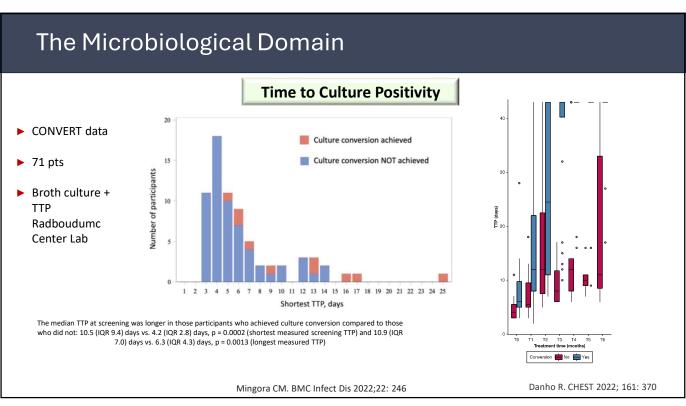
Smear Positivity as an indication for treatment

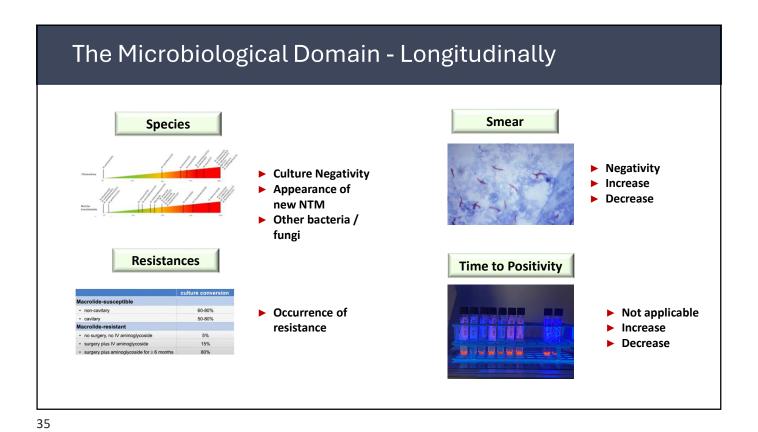

Variable	Smear (-)	Smear (+)	P
	(N=77)	(N=48)	Value ^a
Cavity (□20μ μ)	6	6	0.52
	(7.8)	(12.5)	
Bronchiectasis	69	45	0.53
	(89.6)	(93.8)	
Multifocal	41	28	0.71
Bronchiectasis	(53.2)	(58.3)	
(>2 λοβεσινπολπεδ)			
NTM Disease	40	41	< 0.001
	(51.9)	(85.4)	
ΤρεσιμεντΙνιποπον	10	16	0.01
βψ3 Μοντησ	(13.0)	(33.3)	
ΤρεσαμεντΙνιποπον	13	21	0.002
βψ6 Μοντησ	(16.9)	(43.8)	

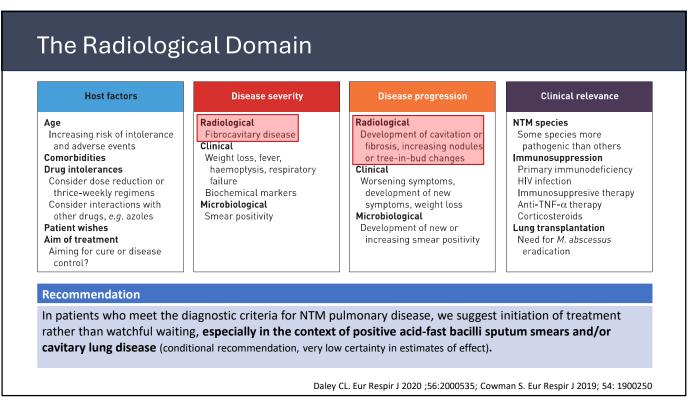
Edwards BD. Ann Am Thorac Soc 2022; 19: 925

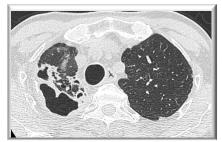
31

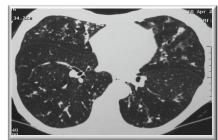
The Microbiological Domain


Time to Culture Positivity






The Microbiological Domain Time to Culture Positivity` 60 TTP associated with: Retrospective cohort study TTP: 12 (10-15, range 6-44) days NTM disease (P=0.03) 125 pts Toronto Western Hospital AFB smear positivity (P<0.001) NTM clinic Treatment initiation within 3 2015-2019 months (P=0.01) and 6 months 20 (P=0.03)10 20 30 40 50 Time to Positivity (Days) ≤10 Days >10 Days P Value* (n = 36)(n = 89)29 (80.6) 30 (83) 14 (38.9) 17 (47.2) 52 (58.4) 18 (20) 12 (13.5) 17 (19.1) Disease presence AFB smear positive Treatment initiation at 3 mo 0.02 <0.001 0.003 Treatment initiation at 6 mo 0.003 Edwards BD. Ann Am Thorac Soc 2022: 19: 925



The Radiological Domain

Predictors of MAC-PD Progression	Univariate an	Multivariate analysis			
Predictors of MAC-PD Progression	HR (95% CI)	p-value	HR (95% CI)	p-value	
Age years	0.99 (0.98-1.00)	0.07	0.99 (0.98-1.00)	0.04	
Male	0.98 (0.77-1.24)	0.85	· · · · · · · · · · · · · · · · · · ·		
BMI kg·m ⁻²	0.89 (0.86-0.93)	<0.001	0.93 (0.88-0.97)	0.002	
Smoker	0.89 (0.70-1.13)	0.34			
Presence of comorbidity	0.91 (0.71-1.16)	0.45			
Presence of systemic symptom ⁺	1.56 (1.19-2.05)	0.001	1.49 (1.10-2.03)	0.01	
sputum AFB positive	2.30 (1.80-2.94)	<0.001	1.81 (1.35-2.43)	<0.001	
Causative organism		0.001		0.36	
M avium	1		1		
M intracellulare	1.51 (1.19-1.93)		0.87 (0.64-1.18)		
Fibrocavitary pattern	2.70 (2.10-3.46)	<0.001	2.10 (1.52-2.91)	<0.001	
Number of Involved lobes	1.38 (1.26-1.52)	<0.001	1.18 (1.05-1.32)	0.005	

Hwang JA. Eur Respir J 2007; 49: 1600537

37

Radiological Predictive Features

The Song Score (MAC-PD)

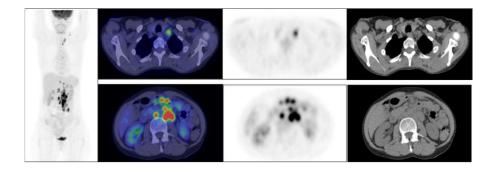
	Score				
CT Finding (Maximum No. of Points)	0	1	2	3	
Bronchiectasis (12 points)					
Severity	Absent	Mild (bronchus diameter > adjacent vessel diameter)	Moderate (bronchus diameter = 2–3× vessel diameter)	Severe (bronchus diameter) > 3× vessel diameter)	
Extent	Absent	1-5 segments	6-9 segments	> 9 segments	
Bronchial wall thickening	Absent	Mild (wall thickness = adjacent vessel diameter)	Moderate (vessel diameter < wall thickness < 2× vessel diameter)	Severe (wall thickness ≥ 2: vessel diameter)	
Mucus plugging	Absent	1-5 segments	6-9 segments	> 9 segments	
Bronchiolitis (6 points)					
Severity	Absent	Mild (identifiable; peripheral lung < 2 cm from pleura)	Moderate (definite; involve- ment > 2 cm from pleura)	Severe (extensive; extending to central lung)	
Extent	Absent	1–5 segments	6-9 segments	> 9 segments	
Cavity (6 points)					
Severity	Absent	Mild (diameter < 3 cm)	Moderate (3 cm < diameter < 5 cm)	Severe (diameter ≥ 5 cm)	
Extent	Absent	1–3 in number	4-5 in number	> 5 in number	
Nodules (10-30 mm in diameter) (3 points)	Absent	1-5 segments	6-9 segments	> 9 segments	
Consolidation, lobular, segmental, or peribronchial (3 points)	Absent	< 3 segments	3—5 segments	> 5 segments	
Bullae (3 points)	Absent	Unilateral (< 4 in number)	Bilateral (< 4 in number)	Bilateral (≥ 4 in number)	
Emphysema (3 points)	Absent	1-5 segments	>5 segments	NA	
Mosaic perfusion (3 points)	Absent	1-5 segments	>5 segments	NA	
Lobar volume decrease (3 points)	Absent	1 lobe	2 lobes	≥3 lobes	
Total CT score (add subtotals) ^a					

Note—Scoring system is a modified version of the scoring system used to evaluate cystic fibrosis [9, 10]. NA = not applicable
"Maximum possible score = 42 points.

The total CT score showed a significant correlation with the RV/TLC ratio, FEV1, FVC

Deep Learning-Based Prediction Model
Using Radiography in Nontuberculous
Mycobacterial Pulmonary Disease

Servero Lee, MO, Hyan Woo Lee, MO, Hyang-Jan Kim, MO, Deep Kyeem Kim, MO; Jan-Jan-Jan Yim, MO;
Son Ho Yoon, PRD; and Rakson Kinsk, MD


Figure 2. Chait indiagraph from representative qualitation in the total and database. A, Chair radiograph from a surviving Cryston-dal venues who are control at the data of filling for large production in the right lover. In the control of the c

Song J. Am J Roentgenol 2008; 191: 1070

Lee S. Chest 2022; 162: 995

Radiological Predictive Features

PET-CT

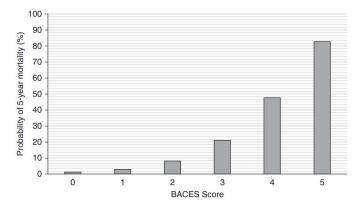
- Case series
- ► Turin, Italy
- ▶ 20 pts
- Mainly "accidental"

"Ideally, FDG-PET and SUVMax measurement should possibly be part of the baseline assessment for patients newly diagnosed with NTM-LD"

Stroffolini G, et al. J Infect 2023

39

The BACES Score to Predict Mortality in NTM


BACES Score for Predicting Mortality in Nontuberculous Mycobacterial Pulmonary Disease

Mycobacterial Pulmonary

Mycobacterial Pulm

EXPLOSE SECTION PLAN COLOR MANAGEMENT OF THE SECTION OF THE SECTIO

BACES: Body mass index, age,
 <u>cavity</u>, erythrocyte sedimentation rate and sex

Estimated 5-year risk of mortality was 1.2% with score 0 and 82.9% with score 5

Kim H-J et al. Am J Respir Crit Care Med 2021, 203; 230

Conclusions

- Smear and Time-To-Positivity to be added in the microbiological report and to be interpreted also longitudinally
- Al and PET-CT to support the radiological evaluation
- Multidisciplinary approach to manage comorbidities
- A large consensus on SoPs to be conducted after treatment initiation (as well as during watchful waiting) is needed
- This should lead to a general agreement on outcomes definitions in real life

41

Clinical Case - Key Issues and Open Questions

- Female, 80 years Retired philosophy teacher Former smoker, 36 p/y (quit)

- GEKU/Niatal hernia Cerebrovascular disease Glaucoma bilateral full blindness Mild hearing loss induced by 2 weeks of azithromycin (1 tablet three times per week), subsequently discontinued Epilepsy on valproate

o Chest CT (March 2024; September

Bilateral cylindrical bronchiectasis; varicoid pattern in RML; mucus plugging; diffuse tree-in-bud; progressive changes

Pulmonary function (September 2025):
• FEV₁ 65% predicted (post-BD)

- Chronic cough for many years attributed to GERD
- Daily cough with an impact on QoL Marked asthenia
- Marked asthenia
 ~7 kg weight loss in 1 year (BMI 17.0)
 Nocturnal cough worse supine
 Mild haemoptysis (2025)

4 in 2025, none hospitalized, treated with antibiotics (ciprofloxacin, amoxicillin-clavulanate, tetracyclines) with only transient benefit

BAL (June 2025):

- Smear Positive
 Time To Culture Positivity ~1 week
 Macrolide susceptible
 Amikacin MIC 32

- Rare colonies
 Galactomannan 1.2 (positive)
 PCR DNA detected

MAC Lung Disease — Treat Now or Defer?

Arguments to TREAT now

- Symptom burden (chronic cough, asthenia, weight loss, functional decline) and radiologic progression.
- BAL AFB+ with short TTP supports active disease

Arguments to DEFER / monitor

- Major tolerability barriers: prior macrolide-associated hearing loss; blindness precludes monitoring for ethambutol optic toxicity
- Polypharmacy (valproate, statin, etc.)

If TREATING MAC

- Consider macrolide-sparing combinations (e.g., clofazimine-based backbones), acknowledging evidence limitations
- Adjunctive inhaled amikacin or LAI if LTO with ototoxicity/nephrotoxicity monitoring plan

If DEFERRING MAC therapy

Tight surveillance

Clinical Case - Key Issues and Open Questions

- Female, 80 years Retired philosophy teacher Former smoker, 36 p/y (quit)

- Comorbidities:
 GERD/hiatal hernia
- Glaucoma → bilateral full blindness
 Mild hearing loss induced by 2 weeks
 of azithromycin (1 tablet three times
 per week), subsequently discontinued
 Epilepsy on valproate

Two Chest CT (March 2024; September 2025):

Bilateral cylindrical bronchiectasis; varicoid pattern in RML; mucus plugging; diffuse tree-in-bud; progressive changes

Imonary function (September 2025): FEV₁ 65% predicted (post-BD)

Chronic cough for many years, attributed to GERD

- Daily cough with an impact on QoL Marked asthenia ~7 kg weight loss in 1 year (BMI 17.0) Nocturnal cough worse supine Mild haemoptysis (2025)

with antibiotics (ciprofloxacin, amoxicillin-clavulanate, tetracyclines) with only transient benefit

Immune profile:

• Relative T- and B-lymphocyte reduction; IgG subclasses normal

BAL (June 2025):

- Smear Positive
 Time To Culture Positivity ~1 week
 Macrolide susceptible
 Amikacin MIC 32

Aspergillus — Treat Now or Not?

Microbiological clarification first

Complete Aspergillus work-up: total IgE; specific IgE and IgG to A. fumigatus and Aspergillus spp (ABPA unlikely)

Arguments to TREAT

GM/PCR positivity in BAL + symptoms and progressive CT could reflect fungal airway disease/early CPA

Arguments to DEFER

Rare colonies on culture; single BAL positivity; potential hepatotoxicity and drug-drug interactions (valproate)

43

Clinical Case - Key Issues and Open Questions

- Female, 80 years Retired philosophy teacher Former smoker, 36 p/y (quit)

- GERD/hiatal hernia Cerebrovascular disease Glaucoma → bilateral full blindness Mild hearing loss induced by 2 weeks of azithromycin (1 tablet three times per week), subsequently discontinued

Two Chest CT (March 2024; September 2025):

Bilateral cylindrical bronchiectasis; varicoid pattern in RML; mucus plugging; diffuse tree-in-bud; progressive changes

Chronic cough for many years, attributed to GERD

- Daily cough with an impact on QoL Marked asthenia
- Marked asthenia
 ~7 kg weight loss in 1 year (BMI 17.0)
 Nocturnal cough worse supine
 Mild haemoptysis (2025)

4 in 2025, none hospitalized, treated

with antibiotics (ciprofloxacin, amoxicillin-clavulanate, tetracyclines) with only transient benefit

Immune profile:
• Relative T- and B-lymphocyte reduction; IgG subclasses normal

BAL (June 2025):

- Mycobacterium avium

 Smear Positive

 Time To Culture Positivity ~1 week

 Macrolide susceptible

 Amikacin MIC 32

- Rare colonies
 Galactomannan 1.2 (positive)
 PCR DNA detected

Non-microbiological Interventions That Impact Outcomes

- Airway clearance: reinforce ACBT; consider nasal irrigation
- Nutrition/rehab: BMI 17.0 → nutritional support; graded physical reconditioning for fatigue
- Vaccinations: PCV20 and Hib (as appropriate) at clinical stability

Antimicrobial Decision-Making in MAC Lung Disease

Optimizing Treatment Outcomes and Microbial Conversion Based on Time to Culture Positivity (TTP), Systematic Microbiological Testing, and Radiologic/Bronchiectasis Severity Scores

THANK YOU

45

Topics for Today's Talk

- Rapid diagnosis of MAC lung disease
- Recommended treatment regimens for MAC lung disease
- Treatment of refractory MAC lung disease
- U.S. and European Guidelines for prescribing ALIS
- ► The ARISE study: ALIS as first line MAC therapy
 - PRO results
 - Microbiologic results
- Anti-inflammatory treatment of bronchiectasis

47

Time to Culture Positivity (TTP) Predicts Who Will Need Therapy

- ▶ Retrospective cohort study of 125 patients with 2 or more positive sputum cultures for *M. avium* (Edwards B, et al. An Amer Thorac Soc. 2022;6:925)
 - **Conclusions**: TTP is associated with bacterial burden and infection severity and increases in response to treatment. A threshold of 10 days or less may be useful in predicting significant MAV-PD.
- ▶ Data from the ALIS CONVERT trial. 71 participants with at least one screening visit TTP value.
 - **Conclusions**: TTP prior to and on treatment is associated with microbiological treatment response in patients with MAC-PD. (Mingora CM, et al.BMC Infect Dis. 2022;22(1):246.)

Serum Cell-Free DNA-based Detection of MAC Infection Li L et al. Am J Respir Crit Care Med. 2024;209:1246-1254.

- ► The CRISPR MAC assay detected MAC cfDNA in MAC PD with 97.6% (91.6-99.7%) sensitivity and 97.6% (91.5-99.7%) specificity overall.
- Serum MAC cfDNA concentrations markedly decreased after MACdirected treatment initiation in patients with MAC PD who demonstrated MAC culture conversion.
- ► This study provides preliminary evidence for the utility of a serumbased CRISPR MAC assay to rapidly detect MAC infection and monitor the response to treatment.

49

Recommended Treatment Regimens for MAC Pulmonary Disease

	No. of Drugs	Preferred Regimen ^a	Dosing Frequency
Nodular- bronchiectatic	3	Azithromycin (clarithromycin) Rifampicin (rifabutin) Ethambutol	3 times weekly
Cavitary	≥3	Azithromycin (clarithromycin) Rifampicin (rifabutin) Ethambutol Amikacin IV (streptomycin) ^b	Daily (IV aminoglycoside may be used 3 times weekly)
Refractory ^c	≥ 4	Azithromycin (clarithromycin) Rifampicin (rifabutin) Ethambutol Amikacin liposome inhalation suspension or IV (streptomycin) ^b	Daily (IV aminoglycoside may be used 3 times weekly)

a. Alternative drugs could include clofazimine, moxifloxacin, linezolid (tedizolid), bedaquiline

Daley CL, et al. CID 2020;71:905-913 and Euro Respir J 2020;56:2000535

b. Consider for cavitary, extensive nodular bronchiectatic or macrolide resistant disease

c. Sputum culture positive after 6 months of guideline-based therapy

Treatment Refractory MAC Pulmonary Disease Inhaled Amikacin

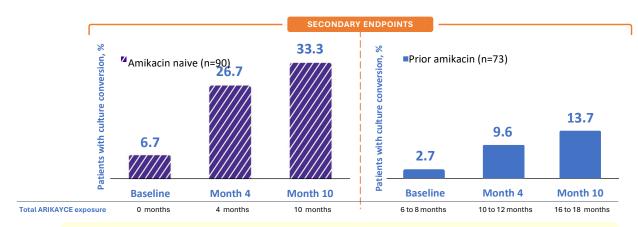
Guideline recommendation

In patients with MAC pulmonary disease who have failed therapy after at least six months of guideline-based therapy, we recommend addition of amikacin liposome inhalation suspension (ALIS) to the treatment regimen rather than a standard oral regimen, only (Strong recommendation, moderate certainty in estimates of effect).

Daley CL, et al. CID 2020;71:5-913 and Euro Respir J 2020;56:2000535

51

Sustainability and Durability of Culture Conversion


In patients who achieved culture conversion by month 6 in CONVERT:

- ▶ Was conversion **sustained** (negative results for 12 mos on treatment)
- ▶ Was conversion **durable** (negative results for 3 mos and 12 mos after treatment)

		% Remaining Culture Negative		egative
Condition	Time of Measurement	ALIS +GBT	GBT	P-value
Sustained	12 months on therapy	63.1%	30.0%	0.064
Durabla	3 months after therapy	55.4%	0%	0.0017
Durable	12 months after therapy	46.2%	0%	< 0.0001

Griffith D, et al. Chest 2021;160:831-842

The secondary endpoint of change from baseline in 6MWT distance did not demonstrate clinical benefit by Month 6 or Month 12 in both the amikacin-naive and prior-amikacin treatment arms.

6MW/I. 6-minute walk test.

PLEASE SEE IMPORTANT SAFETY INFORMATION THROUGHOUT THIS PRESENTATION AND FULL PRESCRIBING INFORMATION, INCLUDING BOXED WARNING, AVAILABLE AT HTTPS://ARIKAYCE.JP/

53

Amikacin Liposomal Inhalation Suspension (ALIS) for Treatment Refractory MAC Lung Disease (2020 NTM Guidelines)

- ALIS recommendation in 2020 Guidelines made on the basis of two large randomized prospective trials
- ► The only "strong recommendation" for MAC therapy
- The only FDA approved therapeutic agent for MAC
- Not recommended (or FDA approved) for initial MAC therapy
- ► The most significant change in NTM therapy recommendations between the 2007 and 2020 guidelines.
- Parenteral amikacin recommended as part of initial therapy for cavitary or "severe" nodular/bronchiectatic disease (no change)

FDA Approval for ALIS in Refractory MAC Lung Disease What is wrong with this picture?

- ▶ I can think of NO other mycobacterial disease where you wait for your best drug (macrolide) to fail before adding your second best drug (ALIS). It is a recipe for acquired mutational resistance to both drugs.
- ► The optimal use of ALIS is including it in the initial MAC treatment regimen.

55

55

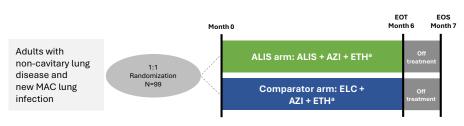
ALIS in Europe and in the U.S.

The US Food and Drug Administration (FDA)

In patients with MAC pulmonary disease who have failed therapy after at least six months of guideline-based therapy, we recommend addition of amikacin liposome inhalation suspension (ALIS) to the treatment regimen rather than a standard oral regimen, only. (strong recommendation, moderate certainty in estimates of effect).

The European Medicines Agency (EMA)

► The EMA recommended ALIS for use in the European Union in 2020 to treat non-tuberculous mycobacterial (NTM) lung infections caused by *Mycobacterium avium Complex (MAC) in adults with limited treatment options.


A Randomized, Double-Blind, Placebo-Controlled, Active Comparator, Multicenter Study to Validate Patient-Reported Outcome Instruments in Adult Subjects with Newly Diagnosed Nontuberculous Mycobacterial Lung Infection Caused by Mycobacterium Avium Complex:

The ARISE Study

Data from an investigational study
ALIS is not yet approved in this patient population

57

INS-415 ARISE Study Design

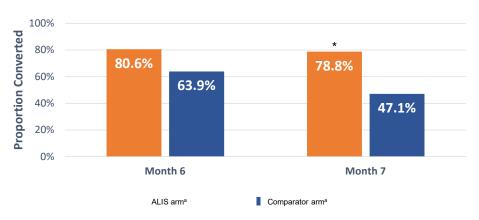
 $^{\rm a}\text{ALIS}\,590$ mg QD or placebo (ELC) QD plus AZI 250 mg QD and ETH 15 mg/kg QD PO

- · Primary Objective: PRO validation for use in patients with MAC lung disease
- Secondary Objectives: Safety & microbiological/culture conversion
 - Symptom improvement and microbiological outcomes are assessed 1 month after completion of study treatment to remove potential confounding by known respiratory side effects of inhaled agents
- Exploratory Objectives: Between-group differences for PRO Scores and for culture conversion endpoints

ALIS: amikacin liposome inhalation suspension; AZI: azithromycin; ELC: empty liposome control; EOS: end of study; EOT: end of treatment; ETH: ethambutol; MAC: Mycobacterium avium complex; PO orally; PRO: patient-reported outcomes; QD: once daily

Correlation Between Culture Conversion and QOL-B Respiratory Domain Score Changes in ALIS Arm

	ALIS Arm ^a (N=48)	
Culture converted by month 6	Not culture converted by month 6	Difference
+15.74	+3.53	+12.21
(+11.45, +20.03)	(-5.34, +12.41)	(+2.33, +22.08)
		0.0167
Culture converted by month 7	Not culture converted by month 7	Difference
+14.89	+4.50	+10.39
(+10.47, +19.31)	(-4.40, +13.40)	(+0.42, +20.37)
		0.0416
	month 6 +15.74 (+11.45, +20.03) Culture converted by month 7 +14.89	Culture converted by month 6 Not culture converted by month 6 +15.74 +3.53 (+11.45, +20.03) (-5.34, +12.41) Culture converted by month 7 Not culture converted by month 7 +14.89 +4.50

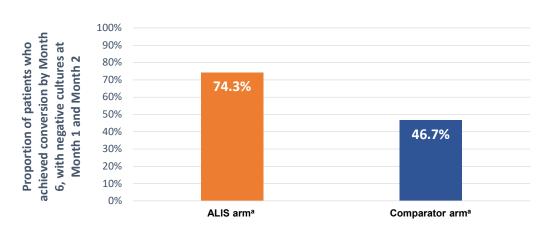

^aALIS arm, ALIS + AZI + ETH

ALIS: amikacin liposome inhalation suspension; AZI: azithromycin; ETH: ethambutol; LS: least-squares; QOL-B RD: Quality of Life-Bronchiectasis Respiratory Domain

59

Culture Conversion by Month 6 and by Month 7

Prespecified analysis with imputation



Proportions estimated by standardized logistic regression with treatment group and history of MAC lung infection as factors in the model with multiple imputation for missing data

*p-value = 0.0010, "Nominally statistically significant" because no hierarchical testing or adjustment for multiplicity was conducted

*ALIS arm, ALIS + AZI + ETH; Comparator arm, ELC + AZI + ETH ALIS: amikacin liposome inhalation suspension; AZI: azithromycin; ELC: empty liposome control; ETH: ethambutol; MAC: Mycobacterium avium complex

Conversion by Month 6, Conversion by Month 2, the First Possible Time to Measure Conversion, as Defined in the Study

No hierarchical testing or adjustment for multiplicity was conducted

^aALIS arm, ALIS + AZI + ETH; Comparator arm, ELC + AZI + ETH ALIS: amikacin liposome inhalation suspension; AZI: azithromycin; ELC: empty liposome control; ETH: ethambutol

61

Summary

- ► ARISE study aimed to establish that QOL-B RD is reliable to measure respiratory symptoms in patients with MAC lung disease (tool is not validated until determined as such by the FDA)
- Secondary objectives included assessment of culture conversion and change in patient reported outcomes
 - Higher culture conversion achieved in the ALIS arm vs the comparator arm at month 7 with nominal statistical significance (*P*=0.0010).
 - Culture conversion achieved earlier in the ALIS arm vs the comparator arm
 - Greater improvement in QOL-B RD score within the ALIS arm vs the comparator arm approaching clinical significance
 - Greater improvement in QOL-B RD observed in ALIS converters compared to ALIS nonconverters
 - Within each study arm, there was an improvement of PROMIS Fatigue score but no statistical difference observed between arms

ALIS arm, ALIS + AZI + ETH; Comparator arm, ELC + AZI + ETH
ALIS: amikacin liposome inhalation suspension; ELC: empty liposome control; PROMIS Fatigue SF 7a: Patient-Reported Outcome Measurement Information System
Fatigue-Short Form 7a; FDA: U.S. Food and Drug Administration; QOL-B RD: Quality of Life - Bronchiectasis Respiratory Domain

Summary

- No new safety events observed in the ALIS arm and in general safety was as expected with ALIS/ELC administration on a macrolide and ethambutol background regimen
- A 15-month confirmatory study (12 months on-treatment, 3 months offtreatment) is ongoing (ENCORE; NCT04677569)

ALIS arm, ALIS + AZI + ETH; Comparator arm, ELC + AZI + ETH ALIS: amikacin liposome inhalation suspension; ELC: empty liposome control; PROMIS Fatigue SF 7a: Patient-Reported Outcome Measurement Information System Fatigue-Short Form 7a; FDA: U.S. Food and Drug Administration; QOL-8 RD: Quality of Life - Bronchiectasis Respiratory Domain

63

FDA Approval for Brensocatib in NCFBE

Phase 3 Trial of the DPP-1 Inhibitor Brensocatib in **Bronchiectasis**

Authors: James D. Chalmers, M.B., Ch.B., Ph.D., Pierre-Régis Burgel, M.D., Ph.D., Charles L. Daley, M.D., Anthony De Soyza, M.B., Ch.B., Ph.D., Charles S. Haworth, M.B., Ch.B., M.D., David Mauger, Ph.D., Michael R. Loebinger, M.D., Ph.D., +n , for the ASPEN Investigators* Au

Copyright © 2025

Published April 23, 2025 | N Engl J Med 202! FDA Approves BRINSUPRITM (Brensocatib) As The First And Only Treatment For Non-Cystic Fibrosis Bronchiectasis, A Serious, **Chronic Lung Disease**

Brensocatib in NCFBE: ASPEN Study Design and Baseline Characteristics

Global phase III ASPEN trial assessed rate of bronchiectasis exacerbations in people receiving brensocatib (10 mg and 25 mg) compared with placebo at 359 clinical sites in 35 countries from Dec 2020-March 2023

Adults aged 18-85 yr with bronchiectasis confirmed by radiologic evidence and having experienced ≥2 exacerbations in prior 12 mo (N = 1682) **Brensocatib** 10 mg PO QD (n = 583)

Brensocatib 25 mg PO QD (n = 575)

Placebo (n = 563)

- Demographics: mean age 61.3 yr; 64.7% female
- Disease severity: ~70% moderate to severe Bronchiectasis Severity Index
- Exacerbations: 29.3% had ≥3 exacerbations in past yr
- P. aeruginosa: present in 35.7% of patients
- Regional BSI scores: highest in Australia/New Zealand (8.3), lowest in Latin America (5.9)
- Cause of disease: idiopathic in 58.4%
- P. aeruginosa-positive vs negative patients:
 - Worse lung function
 - Higher long-term macrolide use (21.5% vs 14.0%)
 - More inhaled corticosteroid use (63.5% vs 53.9%)
- Antibiotic use: notable regional differences in long-term antibiotic use for bronchiectasis with P. aeruginosa

Primary end point: Annualized rate of pulmonary exacerbations over a 52-wk period

Chalmers. ERJ Open Res. 2024;10:00151. Chalmers. NEJM. 2025;392:15692

65

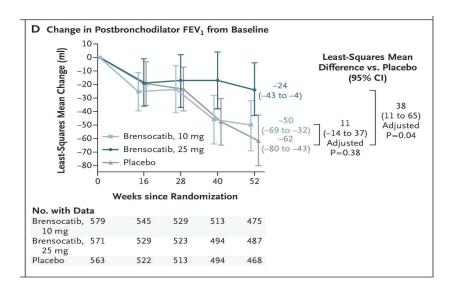
ASPEN Trial Subgroup Analysis: Results

Purpose: evaluate the efficacy of brensocatib, a selective DPP1 inhibitor, in reducing pulmonary exacerbations in bronchiectasis

Primary outcome: significant reduction in annualized exacerbation rates vs placebo:

- 10 mg: \checkmark 21% (RR: 0.789; P = .0019)
- 25 mg: \downarrow 19% (RR: 0.806; P = .0046)

Subgroup consistency: treatment benefits observed across:


- P. aeruginosa status
- Prior exacerbation history
- Geographic regions (notably strong effect in Japan)

Safety: AE incidence similar across groups; COVID-19, cough, headache, nasopharyngitis most common

Conclusion: Brensocatib consistently reduced exacerbations across nearly all subgroups, highlighting its potential as the first targeted treatment for bronchiectasis

Metersky, CHEST, 2024:166:A6554

ASPEN Trial Pulmonary Function Results

67

67

Brensocatib ASPEN trial

- ▶ A total of 1721 patients received brensocatib or placebo.
- Annualized rate of pulmonary exacerbations was 1.02 in the 10-mg brensocatib group, 1.04 in the 25-mg brensocatib group, and 1.29 in the placebo group.
- ► The hazard ratio for the time to the first exacerbation was 0.81, with the 10-mg dose and with the 25-mg dose.
- In each brensocatib group, 48.5% of patients remained exacerbation-free at week 52, as compared with 40.3% in the placebo
- At week 52, FEV₁ had declined by 50 ml with the 10-mg dose, 24 ml with the 25-mg dose, and 62 ml with placebo
- ► The incidence of adverse events was similar across groups, except for a higher incidence of hyperkeratosis with brensocatib.

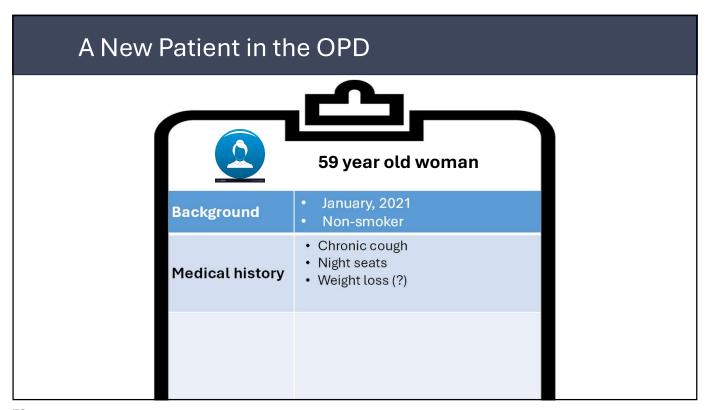
CONCLUSIONS

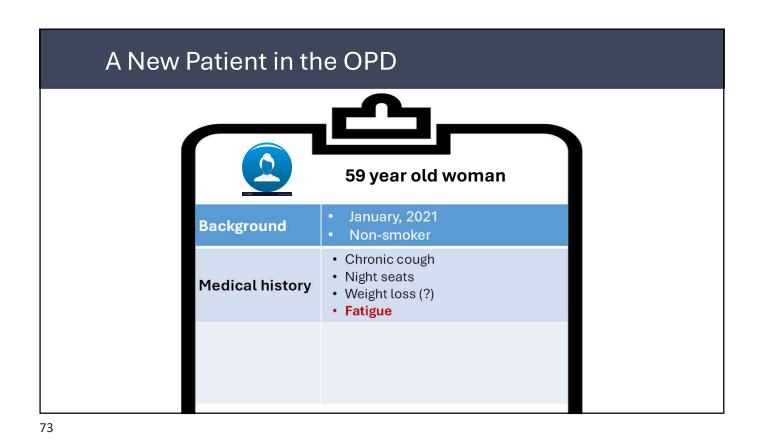
Among patients with bronchiectasis, once-daily treatment with brensocatib (10 mg or 25 mg) led to a lower annualized rate of pulmonary exacerbations than placebo, and the decline in FEV₁ was less with the 25-mg dose of brensocatib than with placebo

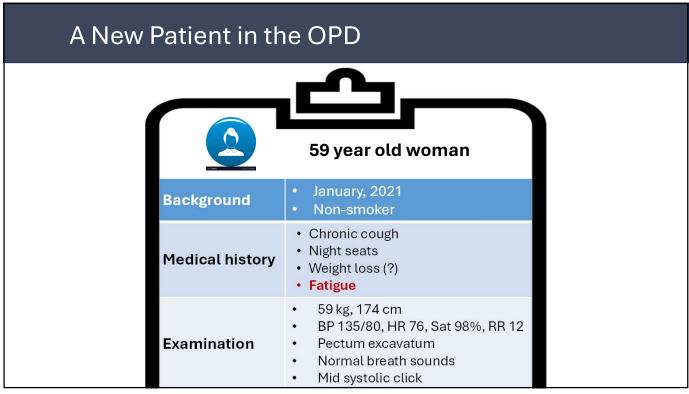
Impact of Time Between Diagnosis and Treatment for NTM Pulmonary Disease on Culture Conversion and All-Cause Mortality

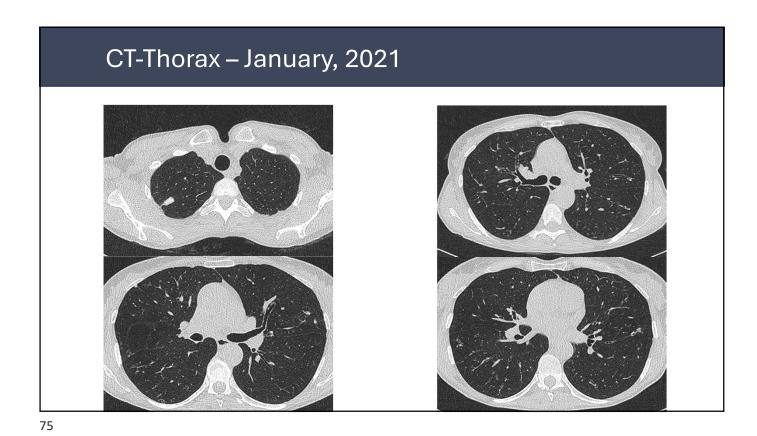
- ▶ 712 patients who received antibiotics for 6 or more months after diagnosis of NTM-PD
- Median waiting period without antibiotics among all patients was 4.8 months
- ► After treatment initiation 479 (67%) patients achieved culture conversion with 6 months.
- No association between the waiting period and 6month culture conversion or death

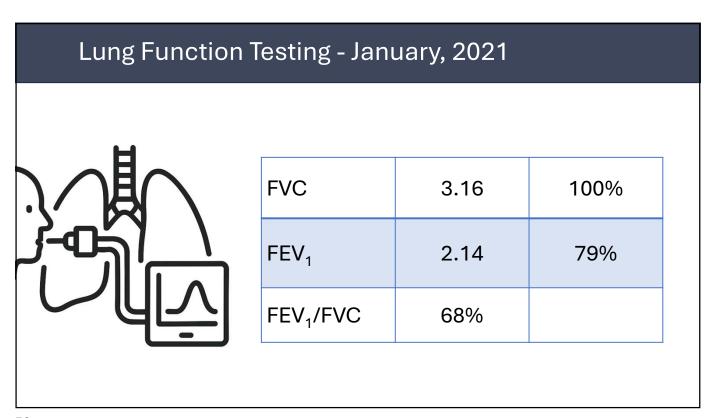
Im Y et al. Chest 2022, 161; 1192


69


Impact of Time Between Diagnosis and Treatment for NTM Pulmonary Disease on Culture Conversion and All-Cause Mortality


- 6-month culture conversion demonstrated a significant negative correlation with death
- ► In the subgroup treated for more than 12 months, 12-month culture conversion was also associated with reduced death
- ► This study suggests that for patients who are treatment refractory at 6 months that an intervention resulting in sputum culture conversion could reduce NTM disease mortality. ALIS significantly improves sputum culture conversion for treatment refractory patients.
- Preliminary data also suggests that ALIS improves sputum culture conversion if given with initial therapy.

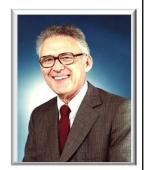

Im Y et al. Chest 2022, 161; 1192



Microbiology

- ► No AFBs on sputum microscopy
- ▶ 1 x M. intracellulare
- ► S: macrolides, amikacin
- ► Time to culture positivity: 10d4h

77


When is Infection a Disease? Clinical **Microbiology Imaging** Positive culture ≥ 2 sputum samples Nodular (A) or cavitary(B) Respiratory symptoms abnormalities ≥1 BAL/bronchial washing and on chest X ray Exclusion of another 1 histology + 1 culture from biopsy or disease Multifocal bronchiectasis, sputum multiple small noduli in HRCT of the same species DALEY C ET AL. ERJ 2020;56:2000535

When is Infection a Disease?

Criterium

Favours disease

1	Growth	Acid-fast bacteria visible
2	Isolation	Repeated isolation of the same species
3	Source	Isolation from a sterile source
4	Species	Pathogenic species (e.G. M. Kansasii)
5	Host factors	Immunodeficiency

WOLINSKY E: REV INFECT DIS 1981; 3: 1025–1027

79

Decision

No treatment necessary

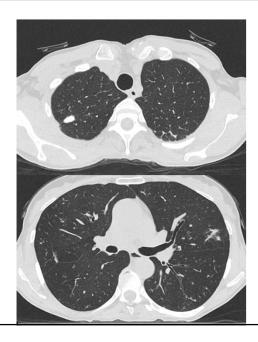
Monitoring

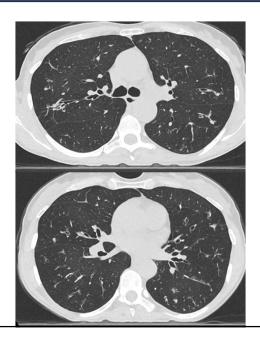
How should physicians monitor patients off treatment?

81

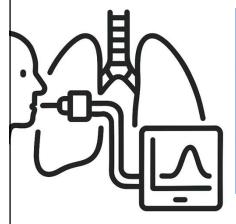
Monitoring: The NTM-PD Diary Research Center Borstel Leibniz Lung Center Clinical diary for patients with non-tuberculous mycobacteria pulmonary diseases (NTM-PD) Date of birth Name: Month: Year: Mycobacterium Date Temperature* (°C) Weight (kg) Night sweats (y/n) Cough (1 - 24)** Sputum amount (1 - 4)** Sputum color*** Hemoptysis (y/n) Fatigue****(1-10) Date Temperature* (°C) Weight (kg) Night sweats (y/n) Cough (1 - 24)** Sputum amount (1 - 4)** Sputum color*** Hemoptysis (y/n) Fatigue**** (1-10) *Temperature: always use the same method (rectal, axillary, in-ear or oral, note in "comments") ** Cough frequency: Any cough within 60 min. counts as 1x. Max score = 24 (at least one cough each hour of the day) ** Sputum amount: 1e (almost) none, 2= little 3= much, 4= very much *** Sputum color: transparent (fly white (w); yellow (y); green (g); brown (b); no sputum: leave blank ****Fatigue: on a scale from 0 (very fit) to 10 (absolute exhausted) neg. Sputum culture ☐ pos. T2C+: neg. © Christoph Lange, Research Center Borstel, Germany; clange@fz-borstel.de

Mon	itc	ri	in	g	: 1	- h	е	N	17	$\lceil N ceil$	1-	-P)	D	ia	ary								
Clinical diary for patie	nts w	ith	non	-tub	erc	ulou	ıs m	iyco	oba	cte	ria p	ouln	non	ary	di:	sea	ses (NTM-PD				,				
Name:	ſ	ate	of h	irth:						NA	vcol	pacte	oriu	m				Mont	h. 4	Z	/	20 2	1	Yea	
Date	1	2	3	4 5	6	7	8	9	10	11	12	13	14	_	5 1	6	Comments	WOITE			•			166	1.
Temperature* (°C)	-	376	35	-	-	376		250	Tr	316	-	357					Comments								
Weight (kg)			145			60,7	100	602	11.0	60	100	600		00	000	- b									
Night sweats (y/n)	10	11	n	10 6	1	July	4	4	in the	6	G	h	C	100	-/ 0	4									
Cough (1 - 24)**	6	0	0	50	1	1	0	0	0	0	0	1	1	10	1	1									
Sputum amount (1 - 4)**	6	0	6	0	5 1	1	Y	0	0	8	0	0	10	16	6										
Sputum color***	10	0			1	1	1	~					1	_	1	1									
Hemoptysis (y/n)													\vdash												
Fatigue****(1-10)	2	3	3	7 :	27	3	2	2	2	7	2	3	3	12		7									
												-	-												
Date	17	18	19	20	21	22	23	24	25	2	6 2	7 2	28	29	30	31	Comments								
Temperature* (°C)	356	35-	71	211	35	136	70	35	6 2	6 27	630	1	16	256	70	35	1								
Weight (kg)	592	148	799	197	59	960	60	60	5 60	760	176	2.74	0.3	50	60	60									
Night sweats (y/n)	11	4	u	1	U	14	11	6	C	-	140	ú	4	h	11	4									
Cough (1 - 24)**	0	0	0	0	0	0	6	16	0	1		t	0	0	0	0									
Sputum amount (1 - 4)**	Ö	Ö	0	0	0	0	0	Ö	O	1) () (5	Ö	O	0						23			
Sputum color***						0	0																		
Hemoptysis (y/n)																									
	7		-	7	7	17	3	1	-		7	7	7	7	2	7							$\overline{}$		




September, 2024

- ▶ Increasing fatigue
- ► Chronic cough
- Night sweats
- ▶ Weight loss

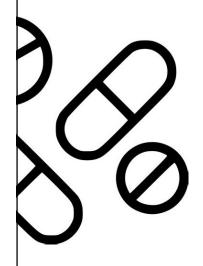

85

CT-Thorax - September, 2024

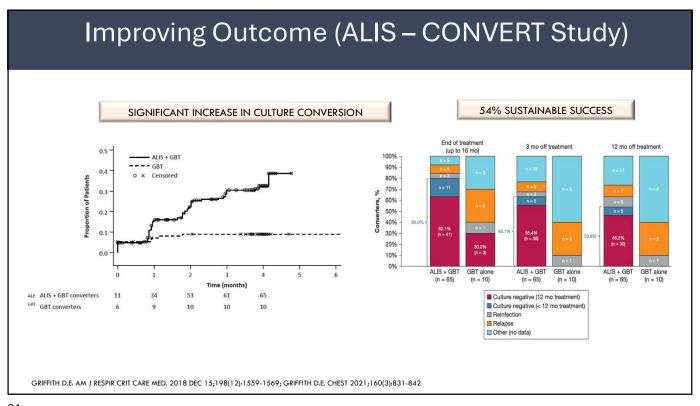
Lung Function Testing – September, 2024

FVC	2.84	82%	- 18%
FEV ₁	1.71	62%	- 17%
FEV ₁ /FVC	60%		- 8%

87


Microbiology – September, 2024

- + AFBs on sputum microscopy
- → 3 x M. intracellulare
- ► S: macrolides, amikacin
- time to culture positivity 5d 23h

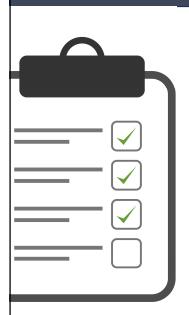

		ш	٤١).		۱r	ıe	9	N	Τ	M	-	P	D		Di	a	ry							
Clinical diary for patients v	wit	h n	on	-tu	bei	rcu	lou	s m	yco	ba	cter	ia p	oul	mo	nar	y di	sea	ses (NTM-PD)		1				
																			Month:	10	1.5	020	4	.,	
Name:			of b		_	_	_						_	teriu	_=	- 1	- 1		Month:	50 000				Year:	_
Date 1	2				5	6	7				11	12	13			15	16	Comments							
Temperature* (°C)	63	3+8	37	37	37	706	.6	-6	7.4	376 tv.2	376	176	57	657	6	_									_
Weight (kg)	.25	J.2-	TI	III	544	19	154.	545	34.1	54.2	14.2	54.	180	6150	12										_
Night sweats (y/n)	/	Y	Y	r	Y	V	4	V	4	V	Y	V	Y	Y	1										
Cough (1 - 24)**	2 4	81	9	9	10	10	to	9	10	to	10	10	to	34	0										
Sputum amount (1 - 4)**	5	3	4	4	4	4	4	4	4	3	4	4	3	3	2										
Sputum color***								,																	
Hemoptysis (y/n)																									
Fatigue****(1-10)	3 1	0	10	10	10	10	10	10	10	10	10	10	10	1 1	0										
Date 17	7 :	18	19	20	7	21	22	23	24	25	2	5 2	27	28	29	30	31	Comments							
Temperature* (°C)																									
Weight (kg)	1				\top	\neg																			
Night sweats (y/n)						\neg																			
Cough (1 - 24)**	†				\top					1							\top								
Sputum amount (1 - 4)**	1				+																				
Sputum color***	+				1	\neg																			
Hemoptysis (y/n)	\top				\top	\neg											\top								
Fatigue**** (1-10)	+				+					_							+	_						- 1,	_

Treatment of MAC-PD

- Macrolide based therapy
- Azithromycin is better than clarithromycin
- At least 3 active substances
- Makrolide, ethambutol + x (x=rifampicin or clofazimine)
- ➤ Severe disease: cavities, ++(+) nodular-bronchiectatic or makrolid-r: amikacin/streptomycin
- ► Consider amikacin liposomal inhaled suspension when otions are limited
- ► Less severe nodulare-bronchiectatic disease: therapy 3 x/week
- Duration: 12 months beyond the time of culture conversion

90

ALIS vs I	V Amikacin		
	Fold difference	e in penetration	
		ALIS vs i.v. amikacin	
	Macrophages	274.2	
	Airways	69.5	
	Lung tissue	42.7	
	Plasma	0.2	
ZHANG J, ET AL. FRONT MICROBI	OL 2018:9·915		i.v., intravenous


Considerations Before Treatment Initiation

What Should Physicians Consider Before Treatment For NTM-Pulmonary Disease Is Initiated?

93

Checklist Before Treatment is Initiated

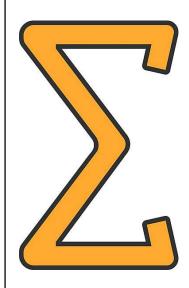
- ▶ Physician's decision to initiate treatment
- Patient's decision to initiate treatment
- All caretakers informed
- ▶ Counselling on adverse events and treatment monitoring schedule
- ► Counselling on cigartette smoking discontinuation (if applicable)
- ▶ Baseline BMI
- Counselling on nutrition
- Baseline imaging studies
- Surgical options have been considered
- ▶ Studies on treatable immunodeficiencies have been performed
- Adjunctive therapy options have been considered
- ► (MAC-DST)
- Baseline time-to-culture positivity*

Obstacles

What obstacles must be expected in the course of therapy?

95

Obstacles to Be Expected



- ► Adverse events
- ► Drug-drug-interactions
- ► Non-adherence
- ► Insufficient drug levels
- ► Non culture conversion
- ► Paradoxical reactions

				N	۱۵	ni	ita	٦r	in	a	•	Τŀ	۱6	_	N	ΙT	TM-PD Diary
				<i>,</i> ,		ш		,		9	•	• •	'	•		11.	im i b biai y
on	2																
Clinical diary for patie	nts w	ith	non	-tub	erci	ulou	is m	iyco	bac	cteri	a p	ulm	ion	ary	/ di	seas	
											15						10/2024
Name:	_	Jate	of b		1.			- T				acte		1			Wionth: Ye
Date	1	2	3	4 5		7	8			2002		13		1	5 /1	_	Comments
Temperature* (°C)	37.6	3+4	37	3/16	377-06	6 . 6	-6	37.7	37.6	3768	761	376	571		.5		
Weight (kg)	27.5	17.2	17.1	11/1	44 50	154	5543	141	54.2	14.2	54.2	561	54.	721	125	4.2	2 \
Night sweats (y/n)	X	Y	Y	KS	VV	4	V	4	V	V	V	Y	Y	y	1	Y	HEATMENT INITION
Cough (1 - 24)**	3	3	9	91	011	sto	9	10	to	10	0	to	40	to	It	0	
Sputum amount (1 - 4)**	3	3	4	4 4	14	4	4	4	3	4	4	3	3	3	7	?	
Sputum color***																	
Hemoptysis (y/n)																	
Fatigue****(1-10)	8	10	10	101	0 10	10	10	10	10	10	10	10	10	10	21	0	
Date	17	18	19	20	21	22	23	24	25	26	27	7 28	3 7	29	30	31	1 Comments
Temperature* (°C)	367	363	364	36	367	55.9	35.6	35.	136	33	381	136	53	6.6	66	366	6
Weight (kg)	577	130	1534	334	BI			54	54	59	154	250	12	542	545	543	Ž
Night sweats (y/n)	1	6	V	1	n	4	n	V	n		V	h		h	[A	U	
Cough (1 - 24)**	10	a	6	8	8	7	7	17	-	J	16	1	_	-	G	4	į į
Sputum amount (1 - 4)**	10	1	1	1			ľ	1	10	1	13		1			-/-	
Sputum color***													\top				
Hemoptysis (y/n)	:																
Fatigue**** (1-10)	9	8	8	D	7	12	2	-6	6	5	J	1	10	u	4	U	/

				٨٨		ni [.]	tc	ri	in	<u> </u>		Τh	2۵		N	T.	M-PD	Di		~		
				/ Y '	·	ш	10	ווע	ш	9		ш	ıC				יאו־ו ט	יוטי	uі	7		
Clinical diam, fan matia		•••																4	v			יים טטוו
Clinical diary for patie	nts w	ith	non-	tub	ercı	ılou	s m	iyco	ba	cter	ia p	ouln	nor	nar	y d	isea	ises (NTM-P	D)		,		
Name:	[Date	of bi	irth:						M	ıcok	acte	rin	m						11/2	024	
Date	1	2		4 5	6	7	8	9	10	11	12	13	14	_	c T	16	Comments	Mont	th:	ι		Year
Temperature* (°C)	355	356	1168	तरा	- 2	20				STA.			21	7 2	7	21 (Comments					
Weight (kg)	144	FVY	544	TUV.	434		TY	non	0	VA V	TO	110	111	DIM	3	17						
Night sweats (y/n)	1/1	h		hi	1 1/2	in in	4	4	1.	Ch.	117	17.6	11.	7	1	1.1.5						
Cough (1 - 24)**	U	3		37	15	3	7	7	5	1	h Z	n	n		1	2						
Sputum amount (1 - 4)**	0	6	Ò	00	0	0	6	6	6	0	0	6	0	10	1							
Sputum color***		-	~	1	10		4		4	-	V		10	-	-	4						
Hemoptysis (y/n)														1	+	_						
Fatigue****(1-10)	U	3	3	3 6	14	3	2	2	3	7	2	2	3	1	, ,	>						
													0	16	-10							
Date	17	18	19	20	21	22	23	24	25	26	27	7 28	3 7	29	30	31	Comments					
Temperature* (°C)	355	55	355	212	355	35.5	25	35.	18	75	125	131	17	77	37	775						
Weight (kg)	27	35	173	55.	374	JJ.U	T.	TTO	153	411	7.5	TSL	7	7	3	T	-					
Night sweats (y/n)	h	N	n	in	n	h	n	a	n	in					n	h						
Cough (1 - 24)**	0	6	1	1	0	6	0	6	C	0) (3 1	1	0	0						
Sputum amount (1 - 4)**		Õ	0	0	Ŏ	Õ	0	0	0	0	Ĉ	0		0	6	0						
Sputum color***			ľ												_							
Hemoptysis (y/n)																						
Fatigue**** (1-10)	2	7	7	7	7	2	7	7	7	7	1 7	7 5	> .	>	2	7						

Summary: Optimizing Outcomes in MAC-PD

- ► Screen for MAC-PD in patients with risk factors
- ▶ Balance the decision about treatment carefully
- ▶ Use a checklist before initiating treatment
- ▶ Provide adequate treatment. The first hit is the best.
- "Limited Options"—Consider antimicrobial intensification as first step
- ▶ Monitor treatment
- ► Expect obstacles and mitigate side effects