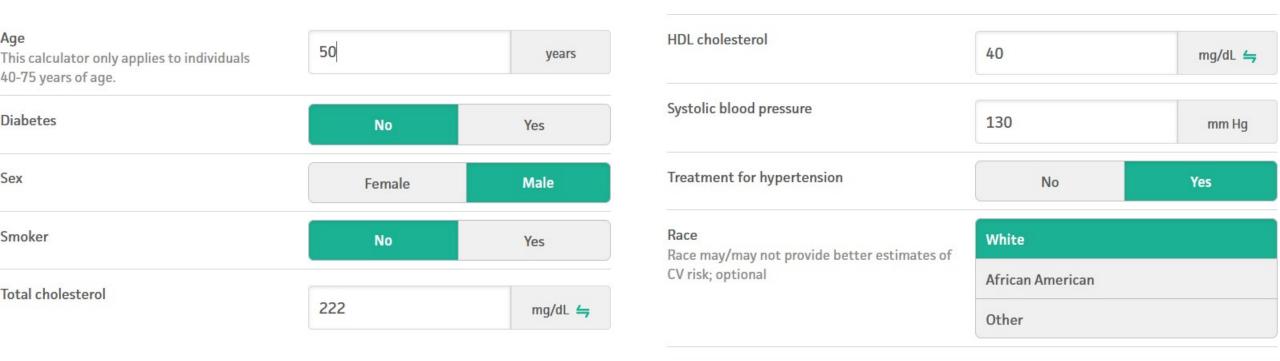
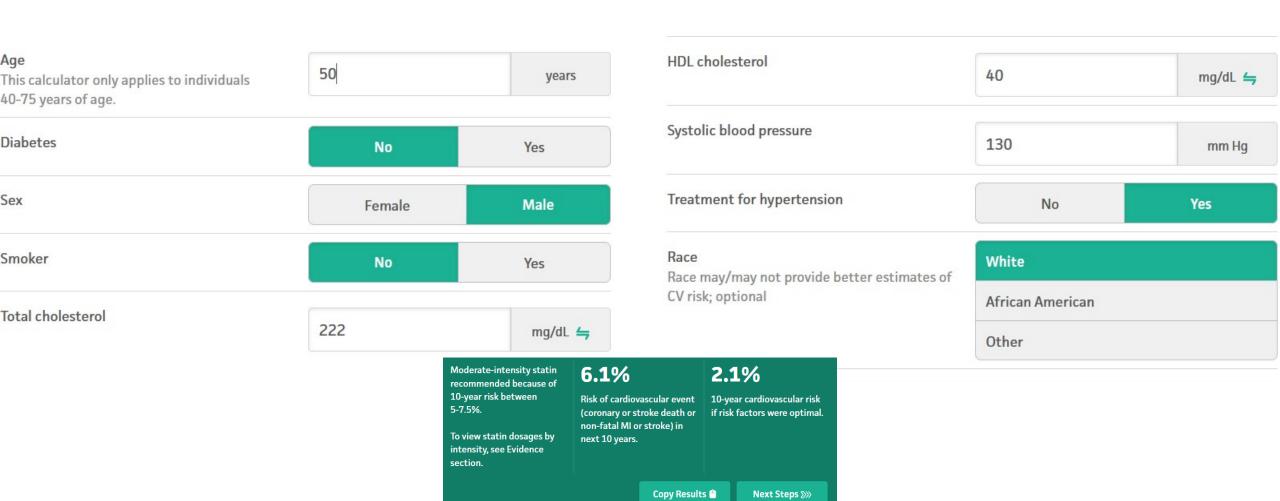
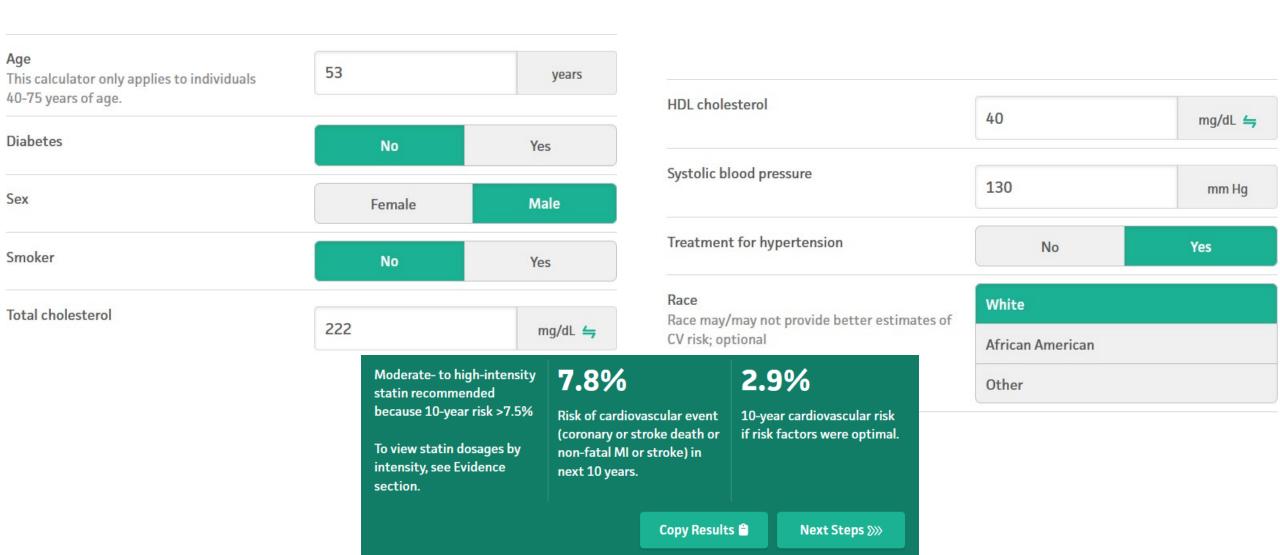
What's the next best test - in the asymptomatic patient?

Denis Yusupov, MD


Advanced Cardiac Imaging


Sentara Norfolk General Hospital


- Why it matters
- + early identification enables preventative strategies or helps guide intensity of interventions.
- + informs shared decision making on statins, aspirin, BP control and lifestyle intervention

Clinical decision framework based on risk in the asymptomatic patient

Risk Category	Suggested Approach
<5% (Low)	Lifestyle counseling
5-7.4% (Borderline)	Consider CAC if uncertain about statins
7.5-19.9% (Intermediate)	Favor statin; discuss intensifying lifestyle changes
≥20% (High)	Strong statin indication; aggressive risk reduction

The asymptomatic patient – understanding risk

Based on the pooled cohort equation (PCE).

```
Risk = 1 - S<sub>o</sub>(t)^exp(ΣβX - MeanRisk)
```

The asymptomatic patient – understanding risk

```
Risk = 1 - S_o(t)^exp(\Sigma\beta X - MeanRisk)
```

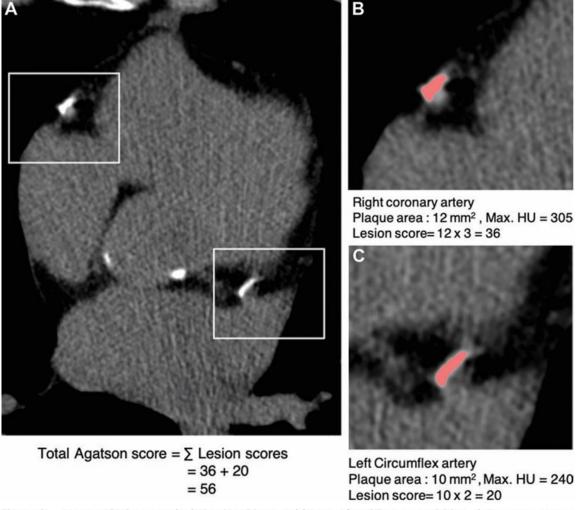
The BETA coefficients are the weight or influence each variable has in he model

For a white male the beta coefficients are:

Variable	β Coefficient
In(Age)	12.344
In(Total Cholesterol)	11.853
In(HDL Cholesterol)	-7.990
In(Age) × In(Total Cholesterol)	-2.664
In(Age) × In(HDL)	1.769
In(Systolic BP, untreated)	1.764
In(Systolic BP, treated)	1.797
Smoking Status (yes)	7.837
In(Age) × Smoker	-1.795
Diabetes Status (yes)	0.658 Risk = 1 -

Obvious limitations

Characteristic	Patient A	Patient B	
Age	42 years	65 years	
Sex	Male	Male	
Race	White	White	
Total Cholesterol	200 mg/dL	200 mg/dL	
HDL Cholesterol	50 mg/dL	50 mg/dL	
Systolic BP	120 mmHg (untreated)	120 mmHg (untreated)	
Smoker	No	No	
Diabetes	No	No	
10-Year ASCVD Risk	~2-3%	~15-20%	


Obvious limitations

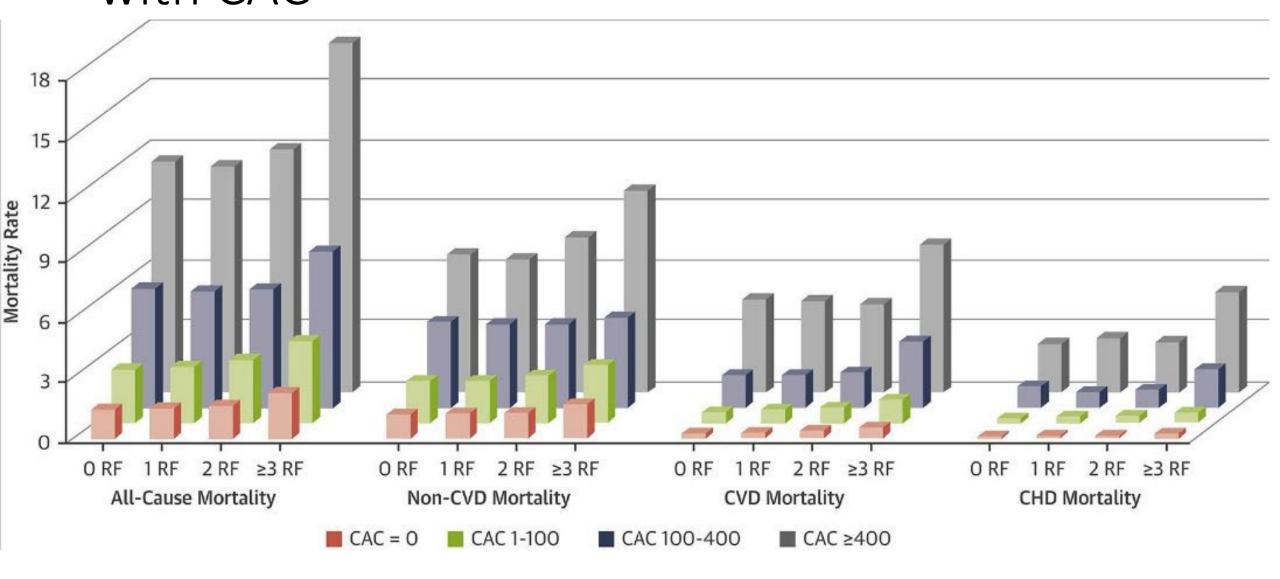
Characteristic		Patient A	Patient B	
Age	e 42 years		65 years	
Sex	Male		Male	
Race		White	White	
Physical Activity	Sed	entary	Regular exercise	
Diet	Hig	h in saturated fats	Mediterranean-style	
вмі	31 <i>(</i>	obese)	24 (healthy weight)	
Smoker		No	No	
Diabetes	petes No		No	
10-Year ASCVD Risk	10-Year ASCVD Risk ~2-3%		~15-20%	

What tests can we order to help stratify the risk?

- Coronary artery calcium (CAC) direct measurement of calcific plaque burden on computed tomography (CT).
- High sensitivity CRP (hs-CRP) systemic inflammation
- Anke Brachial index (ABI) Peripheral artery disease
- Lipoprotein (a) genetic atherogenic lipoprotein
- Apolipoprotein B (ApoB) total number of atherogenic particles

Coronary artery calcium score

Figure 3. Agatson CAC score calculation in a 53-year-old man. After CT scan acquisition, the coronary artery calcifications (square outlines in **A**, red areas in **B** and **C**) are segmented by using a semiautomatic method in the vendor-provided software. The software also provides plaque area and maximal plaque attenuation values, which when multiplied by the attenuation weighting factor yield the calcium score for the plaque. The individual scores of all the coronary plaques are then added and reported as a single number (56 in this example).

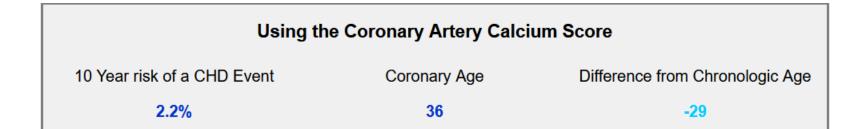

The Multi-Ethnic Study of Atherosclerosis

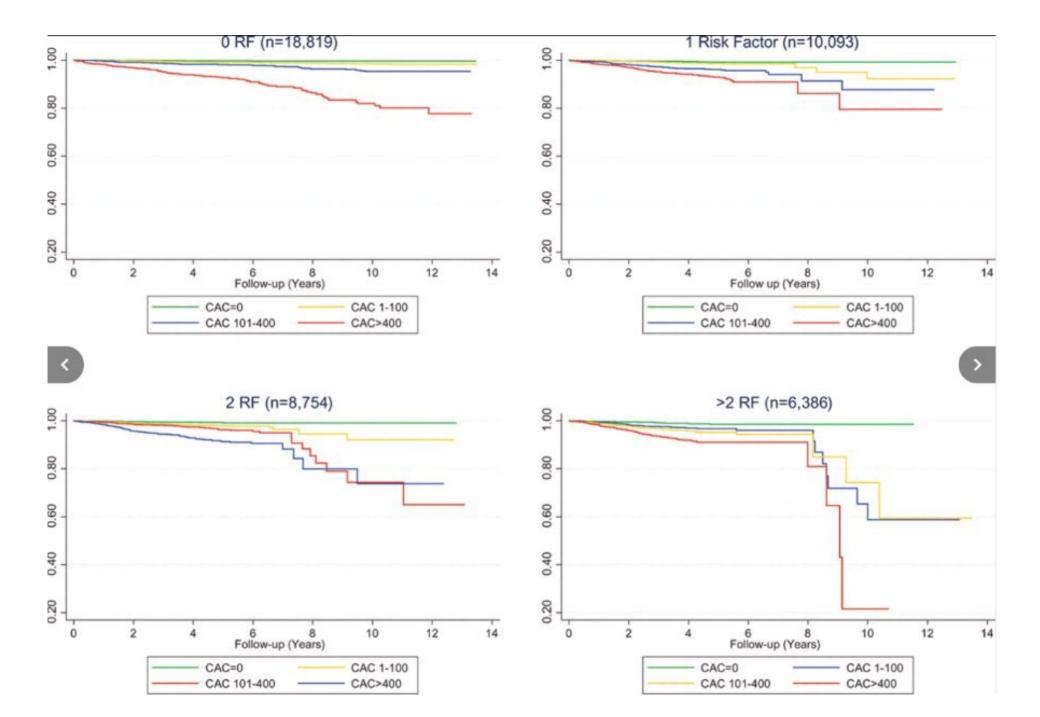
Back to MESA CAC

Input your age, select your gender and race/ethnicity, input (optionally) your observed calcium score and click "Calculate".

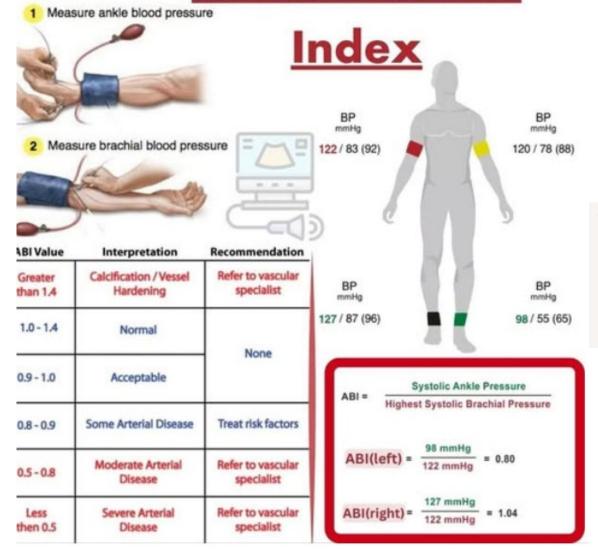
Age (45-84):		
Gender:	female	~
Race/Ethnicity:	chinese	~
Observed Agatston Calcium Score (optional):		
	Calcula	ta

The simple truth is risk scores miss patients with CAC




How about a combo risk score? – The power

of addition


MESA 10-Year CHD Risk with Coronary Artery Calcification

1. Gender	Male F	emale O			
2. Age (45-85 years)	65	Years			
3. Coronary Artery Calcification	0	Agatston			
4. Race/Ethnicity	Caucasian	•			
5. Diabetes	Yes O	No 💿			
6. Currently Smoke	Yes O	No 💿			
7. Family History of Heart Attack (History in parents, siblings, or children)	Yes O	No			
8. Total Cholesterol	200	mg/dL	or	5.2	mmol/L
9. HDL Cholesterol	50	mg/dL	or	1.3	mmol/L
10. Systolic Blood Pressure	120	mmHg	or	16.0	kPa
11. Lipid Lowering Medication	Yes ○	No			
12. Hypertension Medication	Yes O	No			

Other tests - ABI Ankle-Brachial

ABI = (Ankle Systolic BP) / (Brachial Systolic BP)

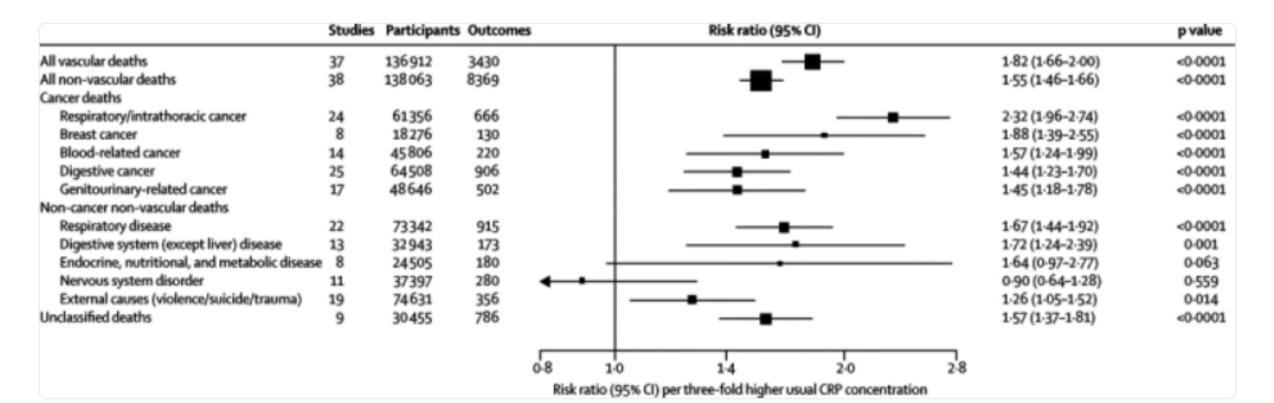
Normal range: 1.0-1.4

<0.9 suggests peripheral artery disease (PAD)

>1.4 may indicate **non-compressible arteries**, often due to medial calcification (e.g., in diabetes or CKD)

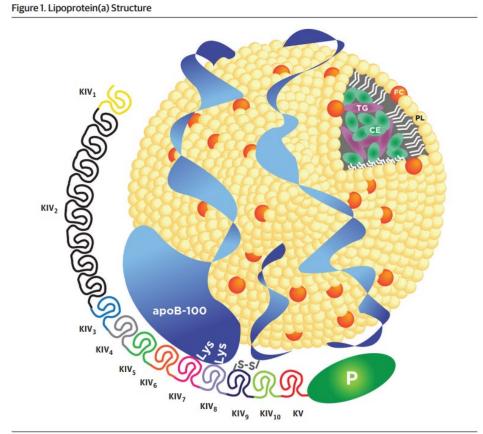
Benefits of ABI

- Improves risk stratification/prognostic: ABI < 0.9 associated with 2-4x increased risk of MI, CVA and CV mortality. Can reclassify borderline ASCVD patients
- Non-invasive not expensive. With proper tools and training can be performed in office in <15 minutes
- Especially useful in special populations: diabetic patients, smokers, older adults, in patients in whom peripheral arterial disease (PAD) is suspected


Framingham Offspring Study	~2,800 asymptomatic adults	ABI <0.9 was independently associated with a 2-3× increased risk of MI, stroke, and CV death, even after adjusting for traditional risk factors.
Meta-analysis (Ankle Brachial Index Collaboration, JAMA 2008)	48,294 participants	ABI <0.9 associated with a hazard ratio of 1.63 for total mortality and 1.96 for CV mortality. ABI improved risk classification beyond Framingham Risk Score.

hsCRP – an independent predictor of MI, stroke, CV death

- Refines risk in intermediate patients: adds granularity in intermediate risk patients.
- hsCRP can help identify patients who will benefit from statin despite LDL-C <130mg/dL, leading to lower CV events an mortality, based on Jupiter trial.
- Widely available, low cost, does not require fasting. Minimal patient risk


hsCRP

- <1.0mg/L: low risk
- 1.0 3.0mg/L: intermediate risk
- >3.0mg/L: high risk

Lipoprotein(a)

• AHA scientific statement (2022): Lp(a) is genetically determined, causal, and prevalent risk factor for ASCVD.

Lipoprotein(a) is a low-density lipoprotein-like particle covalently bound to apolipoprotein(a) via a disulfide linkage. Apolipoprotein(a) consists of 10 subtypes of kringle domain IV (KIV₁₋₁₀), kringle domain V (KV), and an inactive protease domain (P). KIV₂ can expand into more than 40 identically repeated copies. apoB-100 indicates apolipoprotein B-100; CE, cholesterol ester; FC, free cholesterol; Lys, lysine residue; PL, phospholipid; TG, triglyceride.

Lipoprotein(a)

- Associated with 2-3x increased risk of ASCVD and aortic valve stenosis, independent of LDL-C
- Low cost: \$50-150 if not covered by insurance
- Low risk of harm
- Threshold of 50mg/dL (125nmol/L) is often used as cutoff for increased risk
- Lp(a) >99th percentile linked to 3.4x higher MI risk compared to <20th percentile

In summary

- We discussed risk
- The benefits of understanding how that risk is calculated
- Tests that can help us refine our understanding of each asymptomatic patient's risk.

Thank you